Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Total Environ ; 609: 799-806, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28768212

RESUMEN

Concern has grown regarding engineered nanomaterials (ENMs) entering agricultural soils through the application of biosolids and their possible effects on agroecosystems, even though the ENMs are extensively transformed. The effects of exposure to biosolids containing transformation products of these ENMs at low concentrations remain largely unexplored. We examined the responses of Medicago truncatula and its symbiotic rhizobia Sinorhizobium meliloti exposed to soil amended with biosolids from WWTP containing low added concentrations of ENMs (ENM Low), bulk/dissolved metals (bulk/dissolved Low), or no metal additions (control). We targeted adding approximately 5mg/kg of Ag and 50mg/kg of Zn, and Ti. Measured endpoints included M. truncatula growth, nodulation, changes in the expression of stress response genes, uptake of metals (Ag, Zn and Ti) into shoots, and quantification of S. meliloti populations and soil microbial communities. After 30days exposure, no effects on root or shoot biomass were observed in ENM Low and bulk/dissolved Low treatments, whereas both treatments had a larger average number of nodules (5.7 and 5.57, respectively) compared to controls (0.33). There were no significant differences in either total accumulated metal or metal concentrations in shoots among the treatments. Expression of five stress-related genes (metal tolerance protein (MTP), metal transporter (MTR), peroxidase (PEROX), NADPH oxidase (NADPH) and 1-aminocyclopropane-1-carboxylate oxidase-like protein (ACC_Oxidase)) was significantly down-regulated in both bulk/dissolved Low and ENM Low treatments. However, a change in soil microbial community composition and a significant increase in total microbial biomass were observed in ENM Low relative to control. The ENM Low treatment had increased abundance of Gram-negative and anaerobic bacteria and reduced abundance of eukaryotes compared to control. The study demonstrated that although there were some subtle shifts in microbial community composition, plant health was minimally impacted by ENMs within the time frame and at the low exposure concentrations used in this study.


Asunto(s)
Medicago truncatula/efectos de los fármacos , Nanopartículas del Metal/efectos adversos , Aguas del Alcantarillado/efectos adversos , Sinorhizobium meliloti/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/efectos adversos , Suelo , Aguas Residuales
2.
J Food Sci ; 78(2): C152-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23331209

RESUMEN

Antioxidant activity of soy protein (SP) and its hydrolyzed peptides has been widely reported. During scavenging of radicals, these antioxidative compounds would be oxidatively modified, but their fate is not understood. The objective of this study was to evaluate the structural characteristics of SP hydrolysates (SPHs), compared to intact SP, when used to neutralize hydroxyl radicals (•OH). SPHs with degree of hydrolysis (DH) 1 to 5 were prepared with Alcalase. Antioxidant activity of SPHs was confirmed by lipid oxidation inhibition measured with thiobarbituric acid-reactive substances, ability to scavenge 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radicals, and ferrous ion chelation capability. Oxidation of SPHs was initiated by reaction with •OH generated from 0.1 mM FeCl(3) , 20 mM H(2) O(2) , and 1.0 mM ascorbate. After oxidative stress, carbonyl content of SPHs increased by 2- to 3-fold and sulfhydryl groups decreased by up to 42% compared to nonoxidized samples (P < 0.05). Methionine, histidine, and lysine residues were significantly reduced as a result of inactivating •OH (P < 0.05). Attenuated total reflectance-Fourier transform infrared and circular dichroism spectroscopy suggested the conversion of helical structure to strands and turns. Oxidatively modified SPHs had a lower intrinsic fluorescence intensity but similar solubility when compared to nonoxidized samples. These structural changes due to •OH stress may impact the ingredient interaction and functionality of SPHs in food products.


Asunto(s)
Antioxidantes/química , Depuradores de Radicales Libres/química , Radical Hidroxilo/metabolismo , Hidrolisados de Proteína/química , Proteínas de Soja/química , Ácido Ascórbico/metabolismo , Quelantes/metabolismo , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Hidrólisis , Lípidos/química , Oxidación-Reducción , Solubilidad , Proteínas de Soja/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Subtilisinas/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...