Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
2.
JMIR Dermatol ; 6: e48589, 2023 Dec 26.
Article En | MEDLINE | ID: mdl-38147369

BACKGROUND: Chronic graft-versus-host disease (cGVHD) is a significant cause of long-term morbidity and mortality in patients after allogeneic hematopoietic cell transplantation. Skin is the most commonly affected organ, and visual assessment of cGVHD can have low reliability. Crowdsourcing data from nonexpert participants has been used for numerous medical applications, including image labeling and segmentation tasks. OBJECTIVE: This study aimed to assess the ability of crowds of nonexpert raters-individuals without any prior training for identifying or marking cGHVD-to demarcate photos of cGVHD-affected skin. We also studied the effect of training and feedback on crowd performance. METHODS: Using a Canfield Vectra H1 3D camera, 360 photographs of the skin of 36 patients with cGVHD were taken. Ground truth demarcations were provided in 3D by a trained expert and reviewed by a board-certified dermatologist. In total, 3000 2D images (projections from various angles) were created for crowd demarcation through the DiagnosUs mobile app. Raters were split into high and low feedback groups. The performances of 4 different crowds of nonexperts were analyzed, including 17 raters per image for the low and high feedback groups, 32-35 raters per image for the low feedback group, and the top 5 performers for each image from the low feedback group. RESULTS: Across 8 demarcation competitions, 130 raters were recruited to the high feedback group and 161 to the low feedback group. This resulted in a total of 54,887 individual demarcations from the high feedback group and 78,967 from the low feedback group. The nonexpert crowds achieved good overall performance for segmenting cGVHD-affected skin with minimal training, achieving a median surface area error of less than 12% of skin pixels for all crowds in both the high and low feedback groups. The low feedback crowds performed slightly poorer than the high feedback crowd, even when a larger crowd was used. Tracking the 5 most reliable raters from the low feedback group for each image recovered a performance similar to that of the high feedback crowd. Higher variability between raters for a given image was not found to correlate with lower performance of the crowd consensus demarcation and cannot therefore be used as a measure of reliability. No significant learning was observed during the task as more photos and feedback were seen. CONCLUSIONS: Crowds of nonexpert raters can demarcate cGVHD images with good overall performance. Tracking the top 5 most reliable raters provided optimal results, obtaining the best performance with the lowest number of expert demarcations required for adequate training. However, the agreement amongst individual nonexperts does not help predict whether the crowd has provided an accurate result. Future work should explore the performance of crowdsourcing in standard clinical photos and further methods to estimate the reliability of consensus demarcations.

4.
Sci Rep ; 12(1): 6545, 2022 04 21.
Article En | MEDLINE | ID: mdl-35449196

Microvascular haemodynamic alterations are associated with coronary artery disease (CAD). The conjunctival microcirculation can easily be assessed non-invasively. However, the microcirculation of the conjunctiva has not been previously explored in clinical algorithms aimed at identifying patients with CAD. This case-control study involved 66 patients with post-myocardial infarction and 66 gender-matched healthy controls. Haemodynamic properties of the conjunctival microcirculation were assessed with a validated iPhone and slit lamp-based imaging tool. Haemodynamic properties were extracted with semi-automated software and compared between groups. Biomarkers implicated in the development of CAD were assessed in combination with conjunctival microcirculatory parameters. The conjunctival blood vessel parameters and biomarkers were used to derive an algorithm to aid in the screening of patients for CAD. Conjunctival blood velocity measured in combination with the blood biomarkers (N-terminal pro-brain natriuretic peptide and adiponectin) had an area under receiver operator characteristic curve (AUROC) of 0.967, sensitivity 93.0%, specificity 91.5% for CAD. This study demonstrated that the novel algorithm which included a combination of conjunctival blood vessel haemodynamic properties, and blood-based biomarkers could be used as a potential screening tool for CAD and should be validated for potential utility in asymptomatic individuals.


Algorithms , Conjunctiva , Biomarkers , Blood Flow Velocity , Case-Control Studies , Conjunctiva/blood supply , Humans , Microcirculation
5.
Microvasc Res ; 136: 104167, 2021 07.
Article En | MEDLINE | ID: mdl-33838207

PURPOSE: Congenital heart disease (CHD) is the most common live birth defect and a proportion of these patients have chronic hypoxia. Chronic hypoxia leads to secondary erythrocytosis resulting in microvascular dysfunction and increased thrombosis risk. The conjunctival microcirculation is easily accessible for imaging and quantitative assessment. It has not previously been studied in adult CHD patients with cyanosis (CCHD). METHODS: We assessed the conjunctival microcirculation and compared CCHD patients and matched healthy controls to determine if there were differences in measured microcirculatory parameters. We acquired images using an iPhone 6s and slit-lamp biomicroscope. Parameters measured included diameter, axial velocity, wall shear rate and blood volume flow. The axial velocity was estimated by applying the 1D + T continuous wavelet transform (CWT). Results are for all vessels as they were not sub-classified into arterioles or venules. RESULTS: 11 CCHD patients and 14 healthy controls were recruited to the study. CCHD patients were markedly more hypoxic compared to the healthy controls (84% vs 98%, p = 0.001). A total of 736 vessels (292 vs 444) were suitable for analysis. Mean microvessel diameter (D) did not significantly differ between the CCHD patients and controls (20.4 ± 2.7 µm vs 20.2 ± 2.6 µm, p = 0.86). Axial velocity (Va) was lower in the CCHD patients (0.47 ± 0.06 mm/s vs 0.53 ± 0.05 mm/s, p = 0.03). Blood volume flow (Q) was lower for CCHD patients (121 ± 30pl/s vs 145 ± 50pl/s, p = 0.65) with the greatest differences observed in vessels >22 µm diameter (216 ± 121pl/s vs 258 ± 154pl/s, p = 0.001). Wall shear rate (WSR) was significantly lower for the CCHD group (153 ± 27 s-1 vs 174 ± 22 s-1, p = 0.04). CONCLUSIONS: This iPhone and slit-lamp combination assessment of conjunctival vessels found lower axial velocity, wall shear rate and in the largest vessel group, lower blood volume flow in chronically hypoxic patients with congenital heart disease. With further study this assessment method may have utility in the evaluation of patients with chronic hypoxia.


Conjunctiva/blood supply , Cyanosis/diagnosis , Heart Defects, Congenital/diagnosis , Microcirculation , Slit Lamp Microscopy , Adult , Blood Flow Velocity , Case-Control Studies , Cyanosis/etiology , Cyanosis/physiopathology , Female , Heart Defects, Congenital/complications , Heart Defects, Congenital/physiopathology , Humans , Male , Middle Aged , Predictive Value of Tests , Regional Blood Flow , Slit Lamp , Slit Lamp Microscopy/instrumentation , Smartphone , Stress, Mechanical , Young Adult
6.
Sci Rep ; 11(1): 7660, 2021 04 07.
Article En | MEDLINE | ID: mdl-33828174

Microcirculatory dysfunction occurs early in cardiovascular disease (CVD) development. Acute myocardial infarction (MI) is a late consequence of CVD. The conjunctival microcirculation is readily-accessible for quantitative assessment and has not previously been studied in MI patients. We compared the conjunctival microcirculation of acute MI patients and age/sex-matched healthy controls to determine if there were differences in microcirculatory parameters. We acquired images using an iPhone 6s and slit-lamp biomicroscope. Parameters measured included diameter, axial velocity, wall shear rate and blood volume flow. Results are for all vessels as they were not sub-classified into arterioles or venules. The conjunctival microcirculation was assessed in 56 controls and 59 inpatients with a presenting diagnosis of MI. Mean vessel diameter for the controls was 21.41 ± 7.57 µm compared to 22.32 ± 7.66 µm for the MI patients (p < 0.001). Axial velocity for the controls was 0.53 ± 0.15 mm/s compared to 0.49 ± 0.17 mm/s for the MI patients (p < 0.001). Wall shear rate was higher for controls than MI patients (162 ± 93 s-1 vs 145 ± 88 s-1, p < 0.001). Blood volume flow did not differ significantly for the controls and MI patients (153 ± 124 pl/s vs 154 ± 125 pl/s, p = 0.84). This pilot iPhone and slit-lamp assessment of the conjunctival microcirculation found lower axial velocity and wall shear rate in patients with acute MI. Further study is required to correlate these findings further and assess long-term outcomes in this patient group with a severe CVD phenotype.


Conjunctiva/blood supply , Microcirculation , Non-ST Elevated Myocardial Infarction/physiopathology , ST Elevation Myocardial Infarction/physiopathology , Adult , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged , Prospective Studies
7.
Microvasc Res ; 126: 103907, 2019 11.
Article En | MEDLINE | ID: mdl-31330150

PURPOSE: The conjunctival microcirculation is a readily-accessible vascular bed for quantitative haemodynamic assessment and has been studied previously using a digital charge-coupled device (CCD). Smartphone video imaging of the conjunctiva, and haemodynamic parameter quantification, represents a novel approach. We report the feasibility of smartphone video acquisition and subsequent haemodynamic measure quantification via semi-automated means. METHODS: Using an Apple iPhone 6 s and a Topcon SL-D4 slit-lamp biomicroscope, we obtained videos of the conjunctival microcirculation in 4 fields of view per patient, for 17 low cardiovascular risk patients. After image registration and processing, we quantified the diameter, mean axial velocity, mean blood volume flow, and wall shear rate for each vessel studied. Vessels were grouped into quartiles based on their diameter i.e. group 1 (<11 µm), 2 (11-16 µm), 3 (16-22 µm) and 4 (>22 µm). RESULTS: From the 17 healthy controls (mean QRISK3 6.6%), we obtained quantifiable haemodynamics from 626 vessel segments. The mean diameter of microvessels, across all sites, was 21.1µm (range 5.8-58 µm). Mean axial velocity was 0.50mm/s (range 0.11-1mm/s) and there was a modestly positive correlation (r 0.322) seen with increasing diameter, best appreciated when comparing group 4 to the remaining groups (p < .0001). Blood volume flow (mean 145.61pl/s, range 7.05-1178.81pl/s) was strongly correlated with increasing diameter (r 0.943, p < .0001) and wall shear rate (mean 157.31 s-1, range 37.37-841.66 s-1) negatively correlated with increasing diameter (r - 0.703, p < .0001). CONCLUSIONS: We, for the first time, report the successful assessment and quantification of the conjunctival microcirculatory haemodynamics using a smartphone-based system.


Cardiovascular Diseases/diagnosis , Conjunctiva/blood supply , Diagnostic Techniques, Ophthalmological/instrumentation , Hemodynamics , Microcirculation , Slit Lamp , Smartphone , Adult , Blood Flow Velocity , Cardiovascular Diseases/physiopathology , Case-Control Studies , Feasibility Studies , Female , Hemorheology , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Mobile Applications , Models, Cardiovascular , Predictive Value of Tests , Regional Blood Flow
...