Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(2): 34, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286831

RESUMEN

KEY MESSAGE: Shared changes in transcriptomes caused by Fusarium crown rot infection and drought stress were investigated based on a single pair of near-isogenic lines developed for a major locus conferring tolerance to both stresses. Fusarium crown rot (FCR) is a devastating disease in many areas of cereal production worldwide. It is well-known that drought stress enhances FCR severity but possible molecular relationship between these two stresses remains unclear. To investigate their relationships, we generated several pairs of near isogenic lines (NILs) targeting a locus conferring FCR resistance on chromosome 2D in bread wheat. One pair of these NILs showing significant differences between the two isolines for both FCR resistance and drought tolerance was used to investigate transcriptomic changes in responsive to these two stresses. Our results showed that the two isolines likely deployed different strategies in dealing with the stresses, and significant differences in expressed gene networks exist between the two time points of drought stresses evaluated in this study. Nevertheless, results from analysing Gene Ontology terms and transcription factors revealed that similar regulatory frameworks were activated in coping with these two stresses. Based on the position of the targeted locus, changes in expression following FCR infection and drought stresses, and the presence of non-synonymous variants between the two isolines, several candidate genes conferring resistance or tolerance to these two types of stresses were identified. The NILs generated, the large number of DEGs with single-nucleotide polymorphisms detected between the two isolines, and the candidate genes identified would be invaluable in fine mapping and cloning the gene(s) underlying the targeted locus.


Asunto(s)
Fusarium , Transcriptoma , Fusarium/fisiología , Triticum/genética , Sequías , Pan , Enfermedades de las Plantas/genética , Perfilación de la Expresión Génica
2.
Phytopathology ; 114(6): 1356-1365, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38114076

RESUMEN

Puccinia coronata f. sp. avenae is the causal agent of the disease known as crown rust, which represents a bottleneck in oat production worldwide. Characterization of pathogen populations often involves race (pathotype) assignments using differential sets, which are not uniform across countries. This study compared the virulence profiles of 25 P. coronata f. sp. avenae isolates from Australia using two host differential sets, one from Australia and one from the United States. These differential sets were also genotyped using diversity arrays technology sequencing technology. Phenotypic and genotypic discrepancies were detected on 8 out of 29 common lines between the two sets, indicating that pathogen race assignments based on those lines are not comparable. To further investigate molecular markers that could assist in the stacking of rust resistance genes important for Australia, four published Pc91-linked markers were validated across the differential sets and then screened across a collection of 150 oat cultivars. Drover, Aladdin, and Volta were identified as putative carriers of the Pc91 locus. This is the first report to confirm that the cultivar Volta carries Pc91 and demonstrates the value of implementing molecular markers to characterize materials in breeding pools of oat. Overall, our findings highlight the necessity of examining seed stocks using pedigree and molecular markers to ensure seed uniformity and bring robustness to surveillance methodologies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Avena , Resistencia a la Enfermedad , Genotipo , Enfermedades de las Plantas , Puccinia , Avena/microbiología , Avena/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética , Australia , Puccinia/genética , Fenotipo , Virulencia/genética , Estados Unidos , Marcadores Genéticos/genética , Basidiomycota/genética , Basidiomycota/fisiología
3.
Funct Plant Biol ; 48(12): 1302-1314, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34724620

RESUMEN

Resistance of sugarcane (Saccharum officinarum L.) to smut disease (caused by Sporisorium scitamineum) is driven by two separate mechanisms, external and internal resistance. Two progenies generated from an introgression cross, with contrasting responses to smut infection were used to investigate this interaction. Histopathological screening at different stages of the plant growth was used to determine the extent of mycelium growth within sugarcane tissues. Ten disease resistance-related genes were selected, and the relative expression determined using quantitative real-time reverse transcription PCR (real-time RT-qPCR). The results revealed that PR10, HCT1 and ScChi were down-regulated in the susceptible progeny and up-regulated in the resistant progeny early infection process. This may reflect an early attempt to halt pathogen development by increasing the lignin deposition at the infection site. At 8 weeks post-inoculation, they were highly up-regulated in the susceptible progeny coincided with whip development. This reveals a major role for these genes to whip development in the susceptible progeny and indicates that while PR10 is involved in the resistance mechanism of resistant progeny early infection process it also has a role in susceptibility. These results on genetically related progeny with different responses to smut infection reveal a complex interaction of genes and gene networks being induced in response to fungal invasion.


Asunto(s)
Resistencia a la Enfermedad , Saccharum , Basidiomycota , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Saccharum/genética
4.
Phytopathology ; 111(11): 1905-1917, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34241540

RESUMEN

Sugarcane smut caused by the fungus Sporisorium scitamineum is one of the major diseases of sugarcane worldwide, causing significant losses in productivity and profitability of this perennial crop. Teliospores of this fungus are airborne, can travel long distances, and remain viable in hot and dry conditions for >6 months. The disease is easily recognized by its long whiplike sorus produced on the apex or side shoots of sugarcane stalks. Each sorus can release ≤100 million teliospores in a day; the spores are small (≤7.5 µ) and light and can survive in harsh environmental conditions. The airborne teliospores are the primary mode of smut spread around the world and across cane-growing regions. The most effective method of managing this disease is via resistant varieties. Because of the complex genomic makeup of sugarcane, selection for resistant traits is difficult in sugarcane breeding programs. In recent times, the application of molecular markers as a rapid tool of discarding susceptible genotypes early in the selection program has been investigated. Large effect resistance loci have been identified and have the potential to be used for marker-assisted selection to increase the frequency of resistant breeding lines in breeding programs. Recent developments in omics technologies (genomics, transcriptomics, proteomics, and metabolomics) have contributed to our understanding and provided insights into the mechanism of resistance and susceptibility. This knowledge will further our understanding of smut and its interactions with sugarcane genotypes and aid in the development of durable resistant varieties.


Asunto(s)
Saccharum , Ustilaginales , Basidiomycota , Fitomejoramiento , Enfermedades de las Plantas
5.
PLoS One ; 13(5): e0197840, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29795614

RESUMEN

Smut caused by biotrophic fungus Sporisorium scitamineum is a major disease of cultivated sugarcane that can cause considerable yield losses. It has been suggested in literature that there are at least two types of resistance mechanisms in sugarcane plants: an external resistance, due to chemical or physical barriers in the sugarcane bud, and an internal resistance governed by the interaction of plant and fungus within the plant tissue. Detailed molecular studies interrogating these two different resistance mechanisms in sugarcane are scarce. Here, we use light microscopy and global expression profiling with RNA-seq to investigate these mechanisms in sugarcane cultivar CP74-2005, a cultivar that possibly possesses both internal and external defence mechanisms. A total of 861 differentially expressed genes (DEGs) were identified in a comparison between infected and non-infected buds at 48 hours post-inoculation (hpi), with 457 (53%) genes successfully annotated using BLAST2GO software. This includes genes involved in the phenylpropanoid pathway, cell wall biosynthesis, plant hormone signal transduction and disease resistance genes. Finally, the expression of 13 DEGs with putative roles in S. scitamineum resistance were confirmed by quantitative real-time reverse transcription PCR (qRT-PCR) analysis, and the results were consistent with the RNA-seq data. These results highlight that the early sugarcane response to S. scitamineum infection is complex and many of the disease response genes are attenuated in sugarcane cultivar CP74-2005, while others, like genes involved in the phenylpropanoid pathway, are induced. This may point to the role of the different disease resistance mechanisms that operate in cultivars such as CP74-2005, whereby the early response is dominated by external mechanisms and then as the infection progresses, the internal mechanisms are switched on. Identification of genes underlying resistance in sugarcane will increase our knowledge of the sugarcane-S. scitamineum interaction and facilitate the introgression of new resistance genes into commercial sugarcane cultivars.


Asunto(s)
Resistencia a la Enfermedad/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microscopía/métodos , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Saccharum/genética , Ustilaginales/patogenicidad , Regulación de la Expresión Génica de las Plantas , Saccharum/microbiología
6.
BMC Plant Biol ; 14: 190, 2014 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-25059596

RESUMEN

BACKGROUND: The understanding of sugarcane genetics has lagged behind that of other members of the Poaceae family such as wheat, rice, barley and sorghum mainly due to the complexity, size and polyploidization of the genome. We have used the genetic map of a sugarcane cultivar to generate a consensus genetic map to increase genome coverage for comparison to the sorghum genome. We have utilized the recently developed sugarcane DArT array to increase the marker density within the genetic map. The sequence of these DArT markers plus SNP and EST-SSR markers was then used to form a bridge to the sorghum genomic sequence by BLAST alignment to start to unravel the complex genomic architecture of sugarcane. RESULTS: Comparative mapping revealed that certain sugarcane chromosomes show greater levels of synteny to sorghum than others. On a macrosyntenic level a good collinearity was observed between sugarcane and sorghum for 4 of the 8 homology groups (HGs). These 4 HGs were syntenic to four sorghum chromosomes with from 98% to 100% of these chromosomes covered by these linked markers. Four major chromosome rearrangements were identified between the other four sugarcane HGs and sorghum, two of which were condensations of chromosomes reducing the basic chromosome number of sugarcane from x = 10 to x = 8. This macro level of synteny was transferred to other members within the Poaceae family such as maize to uncover the important evolutionary relationships that exist between sugarcane and these species. CONCLUSIONS: Comparative mapping of sugarcane to the sorghum genome has revealed new information on the genome structure of sugarcane which will help guide identification of important genes for use in sugarcane breeding. Furthermore of the four major chromosome rearrangements identified in this study, three were common to maize providing some evidence that chromosome reduction from a common paleo-ancestor of both maize and sugarcane was driven by the same translocation events seen in both species.


Asunto(s)
Genoma de Planta , Poliploidía , Saccharum/genética , Translocación Genética , Evolución Biológica , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos , Sorghum/genética , Sintenía , Zea mays/genética
7.
BMC Genomics ; 15: 152, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24564784

RESUMEN

BACKGROUND: Sugarcane genetic mapping has lagged behind other crops due to its complex autopolyploid genome structure. Modern sugarcane cultivars have from 110-120 chromosomes and are in general interspecific hybrids between two species with different basic chromosome numbers: Saccharum officinarum (2n = 80) with a basic chromosome number of 10 and S. spontaneum (2n = 40-128) with a basic chromosome number of 8. The first maps that were constructed utilised the single dose (SD) markers generated using RFLP, more recent maps generated using AFLP and SSRs provided at most 60% genome coverage. Diversity Array Technology (DArT) markers are high throughput allowing greater numbers of markers to be generated. RESULTS: Progeny from a cross between a sugarcane variety Q165 and a S. officinarum accession IJ76-514 were used to generate 2467 SD markers. A genetic map of Q165 was generated containing 2267 markers, These markers formed 160 linkage groups (LGs) of which 147 could be placed using allelic information into the eight basic homology groups (HGs) of sugarcane. The HGs contained from 13 to 23 LGs and from 204 to 475 markers with a total map length of 9774.4 cM and an average density of one marker every 4.3 cM. Each homology group contained on average 280 markers of which 43% were DArT markers 31% AFLP, 16% SSRs and 6% SNP markers. The multi-allelic SSR and SNP markers were used to place the LGs into HGs. CONCLUSIONS: The DArT array has allowed us to generate and map a larger number of markers than ever before and consequently to map a larger portion of the sugarcane genome. This larger number of markers has enabled 92% of the LGs to be placed into the 8 HGs that represent the basic chromosome number of the ancestral species, S. spontaneum. There were two HGs (HG2 and 8) that contained larger numbers of LGs verifying the alignment of two sets of S. officinarum chromosomes with one set of S. spontaneum chromosomes and explaining the difference in basic chromosome number between the two ancestral species. There was also evidence of more complex structural differences between the two ancestral species.


Asunto(s)
Marcadores Genéticos , Genoma de Planta , Saccharum/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Mapeo Cromosómico , Variación Genética , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA