Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
4.
Br J Dermatol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941442
7.
ACS Nano ; 18(23): 14938-14953, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38726598

RESUMEN

Porous silicon nanoneedles can interface with cells and tissues with minimal perturbation for high-throughput intracellular delivery and biosensing. Typically, nanoneedle devices are rigid, flat, and opaque, which limits their use for topical applications in the clinic. We have developed a robust, rapid, and precise substrate transfer approach to incorporate nanoneedles within diverse substrates of arbitrary composition, flexibility, curvature, transparency, and biodegradability. With this approach, we integrated nanoneedles on medically relevant elastomers, hydrogels, plastics, medical bandages, catheter tubes, and contact lenses. The integration retains the mechanical properties and transfection efficiency of the nanoneedles. Transparent devices enable the live monitoring of cell-nanoneedle interactions. Flexible devices interface with tissues for efficient, uniform, and sustained topical delivery of nucleic acids ex vivo and in vivo. The versatility of this approach highlights the opportunity to integrate nanoneedles within existing medical devices to develop advanced platforms for topical delivery and biosensing.


Asunto(s)
Ácidos Nucleicos , Silicio , Silicio/química , Porosidad , Animales , Ácidos Nucleicos/química , Humanos , Nanoestructuras/química , Nanotecnología , Ratones
8.
JAMA Dermatol ; 160(7): 732-735, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38809548

RESUMEN

Importance: Frontal fibrosing alopecia (FFA) is an increasingly prevalent form of follicular lichen planus, causing irreversible hair loss predominantly in postmenopausal individuals. An earlier genome-wide meta-analysis of female FFA identified risk loci in genes implicated in self-antigen presentation and T-cell homeostasis, including HLA-B*07:02, ST3GAL1, and SEMA4B. However, CYP1B1, which is important for hormone metabolism, was also implicated with the substitution of serine for asparagine at position 453 (c.1358A>G, p.Asn453Ser) exhibiting a protective effect against FFA. Increasing understanding of genetic and environmental variables and their interactions will improve understanding of disease pathogenesis and has the potential to inform risk mitigation strategies. Objective: To investigate whether oral contraceptive pill (OCP) use modulates the protective effect of the common missense variant in CYP1B1 (c.1358A>G, p.Asn453Ser) on FFA risk. Design, Setting, and Participants: This gene-environment interaction study using a case-control design enrolled female patients with FFA from UK-based dermatology clinics. The patients were matched with unrelated age- and ancestry-matched female control individuals derived from UK Biobank in a 1:66 ratio, determined by the first 4 principal components from genome-wide genotypes. Data were collected from July 2015 to September 2017, and analyzed from October 2022 to December 2023. Main Outcome and Measure: The main outcomes were the modulatory effect of OCP use on the contribution of the CYP1B1 missense variant to female FFA risk and a formal gene-environment interaction test evaluated by a logistic regression model with a multiplicative interaction term, under the assumptions of an additive genetic model interaction term, under the assumptions of an additive genetic model. Results: Of the 489 female patients with FFA, the mean (SD) age was 65.8 (9.7) years, and 370 (75.7%) had a history of OCP use. Of the 34 254 age- and ancestry-matched control individuals, the mean (SD) age was 65.0 (8.4) years, and previous OCP use was reported in 31 177 (91.0%). An association between female FFA and the CYP1B1 risk allele was observed in individuals who reported OCP use (odds ratio, 1.90 [95% CI, 1.50-2.40]; P = 8.41 × 10-8) but not in those with no documented exposure to OCPs (odds ratio, 1.16 [95% CI, 0.82-1.64]; P = .39). A full gene-environment interaction model demonstrated a significant additive statistical interaction between c.1358A, p.453Asn, and history of OCP use on FFA risk (OR for interaction, 1.63 [95% CI, 1.07-2.46]; P = .02). Conclusions and Relevance: This gene-environment interaction analysis suggests that the protective effect of the CYP1B1 missense variant on FFA risk might be mediated by exposure to OCPs. The allele that encodes an asparagine at position 453 of CYP1B1 was associated with increased odds of FFA only in participants with OCP history.


Asunto(s)
Alopecia , Citocromo P-450 CYP1B1 , Interacción Gen-Ambiente , Humanos , Femenino , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Alopecia/genética , Persona de Mediana Edad , Estudios de Casos y Controles , Anticonceptivos Orales/efectos adversos , Anticonceptivos Orales/administración & dosificación , Anciano , Adulto , Predisposición Genética a la Enfermedad , Liquen Plano/genética , Mutación Missense , Reino Unido/epidemiología
10.
J Invest Dermatol ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38613531

RESUMEN

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease resulting from inadequate type VII collagen (C7). Although recurrent skin blisters and wounds are the most apparent disease features, the impact of C7 loss is not confined to the skin and mucous membranes. RDEB is a systemic disease marred by chronic inflammation, fibrotic changes, pain, itch, and anemia, significantly impacting QOL and survival. In this narrative review, we summarize these systemic features of RDEB and promising research avenues to address them.

12.
Mol Ther ; 32(5): 1497-1509, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429928

RESUMEN

The hallmark of epidermolysis bullosa (EB) is fragile attachment of epithelia due to genetic variants in cell adhesion genes. We describe 16 EB patients treated in the ear, nose, and throat department of a tertiary pediatric hospital linked to the United Kingdom's national EB unit between 1992 and 2023. Patients suffered a high degree of morbidity and mortality from laryngotracheal stenosis. Variants in laminin subunit alpha-3 (LAMA3) were found in 10/15 patients where genotype was available. LAMA3 encodes a subunit of the laminin-332 heterotrimeric extracellular matrix protein complex and is expressed by airway epithelial basal stem cells. We investigated the benefit of restoring wild-type LAMA3 expression in primary EB patient-derived basal cell cultures. EB basal cells demonstrated weak adhesion to cell culture substrates, but could otherwise be expanded similarly to non-EB basal cells. In vitro lentiviral overexpression of LAMA3A in EB basal cells enabled them to differentiate in air-liquid interface cultures, producing cilia with normal ciliary beat frequency. Moreover, transduction restored cell adhesion to levels comparable to a non-EB donor culture. These data provide proof of concept for a combined cell and gene therapy approach to treat airway disease in LAMA3-affected EB.


Asunto(s)
Adhesión Celular , Epidermólisis Ampollosa , Laminina , Lentivirus , Humanos , Laminina/metabolismo , Laminina/genética , Epidermólisis Ampollosa/genética , Epidermólisis Ampollosa/metabolismo , Epidermólisis Ampollosa/terapia , Epidermólisis Ampollosa/patología , Niño , Lentivirus/genética , Masculino , Femenino , Preescolar , Terapia Genética/métodos , Vectores Genéticos/genética , Células Epiteliales/metabolismo , Células Cultivadas , Expresión Génica , Adolescente , Lactante
13.
EMBO Mol Med ; 16(4): 870-884, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462666

RESUMEN

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare inherited skin disease characterized by defects in type VII collagen leading to a range of fibrotic pathologies resulting from skin fragility, aberrant wound healing, and altered dermal fibroblast physiology. Using a novel in vitro model of fibrosis based on endogenously produced extracellular matrix, we screened an FDA-approved compound library and identified antivirals as a class of drug not previously associated with anti-fibrotic action. Preclinical validation of our lead hit, daclatasvir, in a mouse model of RDEB demonstrated significant improvement in fibrosis as well as overall quality of life with increased survival, weight gain and activity, and a decrease in pruritus-induced hair loss. Immunohistochemical assessment of daclatasvir-treated RDEB mouse skin showed a reduction in fibrotic markers, which was supported by in vitro data demonstrating TGFß pathway targeting and a reduction of total collagen retained in the extracellular matrix. Our data support the clinical development of antivirals for the treatment of patients with RDEB and potentially other fibrotic diseases.


Asunto(s)
Carbamatos , Epidermólisis Ampollosa Distrófica , Imidazoles , Pirrolidinas , Valina/análogos & derivados , Humanos , Animales , Ratones , Epidermólisis Ampollosa Distrófica/tratamiento farmacológico , Epidermólisis Ampollosa Distrófica/patología , Calidad de Vida , Colágeno Tipo VII/metabolismo , Colágeno Tipo VII/uso terapéutico , Fibrosis , Antivirales/farmacología , Antivirales/uso terapéutico , Piel/metabolismo , Piel/patología
15.
Clin Exp Dermatol ; 49(8): 887-892, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38469681

RESUMEN

Autosomal recessive congenital ichthyosis (ARCI) is a genetically heterogeneous disorder with aberrant skin scaling and increased transepidermal water loss (TEWL). Current treatments for ARCI are limited and suboptimal. We present the case of a 27-year-old man with ARCI resulting from a homozygous missense variant in TGM1. RNA-sequencing of lesional skin revealed aberrant Janus kinase-signal transducer and activator of transcription signalling, providing a rationale for innovative treatment with a Janus kinase inhibitor. We prescribed oral tofacitinib (11 mg daily) for 26 weeks. Rapid improvements in erythema and fissuring occurred within the first month. Sustained reductions in 5-D itch scale and Dermatology Life Quality Index scores were also observed. TEWL decreased for the first 10 weeks but increased thereafter. Tofacitinib downregulated inflammatory genes and pathways, while enhancing skin barrier markers. Moreover, transglutaminase 1 distribution was normalized although enzymatic activity remained deficient. This study suggests that oral tofacitinib may be a useful therapy to consider for patients with ARCI.


Asunto(s)
Piperidinas , Pirimidinas , Humanos , Masculino , Pirimidinas/uso terapéutico , Adulto , Piperidinas/uso terapéutico , Transglutaminasas/genética , Mutación Missense , Inhibidores de Proteínas Quinasas/uso terapéutico , Administración Oral , Piel/patología
16.
Br J Dermatol ; 191(2): 252-260, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38477474

RESUMEN

BACKGROUND: Dominant dystrophic epidermolysis bullosa (DDEB) is characterized by trauma-induced blisters and, in some individuals, intense pruritus. Precisely what causes itch in DDEB and optimal ways to reduce it have not been fully determined. OBJECTIVES: To characterize DDEB skin transcriptomes to identify therapeutic targets to reduce pruritus in patients. METHODS: Using bulk RNA sequencing, we evaluated affected and unaffected skin biopsy samples from six patients with DDEB (all with the very itchy pruriginosa subtype) and four healthy individuals. Single-cell transcriptomes of affected (n = 2) and unaffected (n = 1) DDEB skin and healthy skin (n = 2) were obtained. Dupilumab treatment was provided for three patients. RESULTS: The skin bulk transcriptome showed significant enrichment of T helper (Th)1/2 and Th17 pathways in affected DDEB skin compared with nonlesional DDEB skin and healthy skin. Single-cell transcriptomics showed an association of glycolytically active GATA3+ Th2 cells in affected DDEB skin. Treatment with dupilumab in three people with DDEB led to significantly reduced visual analogue scale (VAS) itch scores after 12 weeks (mean VAS 3.83) compared with pretreatment (mean VAS 7.83). Bulk RNAseq and quantitative polymerase chain reaction showed that healthy skin and dupilumab-treated epidermolysis bullosa (EB) pruriginosa skin have similar transcriptomic profiles and reduced Th1/Th2 and Th17 pathway enrichment. CONCLUSIONS: Single-cell RNAseq helps define an enhanced DDEB-associated Th2 profile and rationalizes drug repurposing of anti-Th2 drugs in treating DDEB pruritus.


Dominant dystrophic epidermolysis bullosa (DDEB) is a rare inherited skin disease that causes fragile skin that blisters easily, often triggered by minor injuries. These blisters are accompanied by intense itching, which can be distressing. The underlying cause of DDEB lies in genetic mutations in a gene called COL7A1. This gene encodes 'type VII collagen', a protein crucial for attaching the outer skin layer (epidermis) to the layer beneath (dermis). Although the genetic basis of DDEB is understood, the causes of itch are not known. As well as this, effective treatments for DDEB are lacking, which has driven scientists to explore innovative approaches like repurposing existing drugs. Drug repurposing involves using medications that have already been approved for other health conditions. One such drug is dupilumab, which is used for severe atopic dermatitis (eczema). Dupilumab targets immune cells called Th2 cells, which play a role in inflammation and allergies. While dupilumab has shown promise in relieving DDEB itching, the way it works in this condition is unclear. This study, carried out by a group of researchers in Taiwan, looked at gene expression in DDEB-affected and unaffected skin, and compared it to gene expression in healthy skin samples. We found heightened activity in Th2 immune cells and abnormal gene signals related to itching, similar to atopic dermatitis. These findings support using dupilumab and other anti-inflammatory drugs to alleviate itching in DDEB. Clinical trials will be crucial to evaluate the effectiveness of these drugs for managing DDEB symptoms. This research opens doors for enhanced treatment options and improving the quality of life of people living with DDEB.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Epidermólisis Ampollosa Distrófica , Factor de Transcripción GATA3 , Prurito , Piel , Células Th2 , Humanos , Epidermólisis Ampollosa Distrófica/complicaciones , Epidermólisis Ampollosa Distrófica/inmunología , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/patología , Prurito/etiología , Prurito/inmunología , Prurito/tratamiento farmacológico , Prurito/patología , Células Th2/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Masculino , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/genética , Femenino , Piel/inmunología , Piel/patología , Adulto , Transcriptoma , Estudios de Casos y Controles , Persona de Mediana Edad , Análisis de la Célula Individual
18.
J Biomed Sci ; 31(1): 12, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38254097

RESUMEN

BACKGROUND: Pathologic scars, including keloids and hypertrophic scars, represent a common form of exaggerated cutaneous scarring that is difficult to prevent or treat effectively. Additionally, the pathobiology of pathologic scars remains poorly understood. We aim at investigating the impact of TEM1 (also known as endosialin or CD248), which is a glycosylated type I transmembrane protein, on development of pathologic scars. METHODS: To investigate the expression of TEM1, we utilized immunofluorescence staining, Western blotting, and single-cell RNA-sequencing (scRNA-seq) techniques. We conducted in vitro cell culture experiments and an in vivo stretch-induced scar mouse model to study the involvement of TEM1 in TGF-ß-mediated responses in pathologic scars. RESULTS: The levels of the protein TEM1 are elevated in both hypertrophic scars and keloids in comparison to normal skin. A re-analysis of scRNA-seq datasets reveals that a major profibrotic subpopulation of keloid and hypertrophic scar fibroblasts greatly expresses TEM1, with expression increasing during fibroblast activation. TEM1 promotes activation, proliferation, and ECM production in human dermal fibroblasts by enhancing TGF-ß1 signaling through binding with and stabilizing TGF-ß receptors. Global deletion of Tem1 markedly reduces the amount of ECM synthesis and inflammation in a scar in a mouse model of stretch-induced pathologic scarring. The intralesional administration of ontuxizumab, a humanized IgG monoclonal antibody targeting TEM1, significantly decreased both the size and collagen density of keloids. CONCLUSIONS: Our data indicate that TEM1 plays a role in pathologic scarring, with its synergistic effect on the TGF-ß signaling contributing to dermal fibroblast activation. Targeting TEM1 may represent a novel therapeutic approach in reducing the morbidity of pathologic scars.


Asunto(s)
Cicatriz Hipertrófica , Queloide , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Antígenos CD , Antígenos de Neoplasias , Cicatriz Hipertrófica/metabolismo , Fibroblastos , Queloide/metabolismo , Piel
20.
J Invest Dermatol ; 144(7): 1491-1504.e10, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38218364

RESUMEN

Acne keloidalis is a primary scarring alopecia characterized by longstanding inflammation in the scalp causing keloid-like scar formation and hair loss. Histologically, acne keloidalis is characterized by mixed leukocytic infiltrates in the acute stage followed by a granulomatous reaction and extensive fibrosis in the later stages. To further explore its pathogenesis, bulk RNA sequencing, single-cell RNA sequencing, and spatial transcriptomics were applied to occipital scalp biopsy specimens of lesional and adjacent no-lesional skin in patients with clinically active disease. Unbiased clustering revealed 19 distinct cell populations, including 2 notable populations: POSTN+ fibroblasts with enriched extracellular matrix signatures and SPP1+ myeloid cells with an M2 macrophage phenotype. Cell communication analyses indicated that fibroblasts and myeloid cells communicated by SPP1 signaling networks in lesional skin. A reverse transcriptomics in silico approach identified corticosteroids as possessing the capability to reverse the gene expression signatures of SPP1+ myeloid cells and POSTN+ fibroblasts. Intralesional corticosteroid injection greatly reduced SPP1 and POSTN gene expression as well as acne keloidalis disease activity. Spatial transcriptomics and immunofluorescence staining verified microanatomic specificity of SPP1+ myeloid cells and POSTN+ fibroblasts with disease activity. In summary, the communication between POSTN+ fibroblasts and SPP1+ myeloid cells by SPP1 axis may contribute to the pathogenesis of acne keloidalis.


Asunto(s)
Acné Queloide , Fibroblastos , Macrófagos , Humanos , Fibroblastos/metabolismo , Fibroblastos/patología , Macrófagos/metabolismo , Macrófagos/patología , Acné Queloide/patología , Acné Queloide/metabolismo , Osteopontina/metabolismo , Osteopontina/genética , Fibrosis , Masculino , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Femenino , Adulto , Cicatriz/patología , Cuero Cabelludo/patología , Comunicación Celular , Biopsia , Queloide/patología , Queloide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA