Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4825, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862542

RESUMEN

Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.


Asunto(s)
Astronautas , Radiación Cósmica , MicroARNs , Vuelo Espacial , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Radiación Cósmica/efectos adversos , Roturas del ADN de Doble Cadena/efectos de la radiación , Traumatismos por Radiación/genética , Traumatismos por Radiación/prevención & control , Masculino , Mitocondrias/efectos de la radiación , Mitocondrias/metabolismo , Mitocondrias/genética , Femenino , Adulto
2.
Chempluschem ; 88(7): e202300189, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37442786

RESUMEN

A series of rhodol-; fluorescein- and rhodamines-based spirolactam compounds, bearing electron donor amines have been prepared. For this purpose we have redesigned the synthesis of the rhodol scaffold using 2-(2,4-dihydroxybenzoyl)benzoic acid obtaining one example rhodol methyl ester in good yields (25-30 %) Thus, one set of non-cytotoxic rhodamine-based compounds has been prepared using thermal and microwave assisted synthesis (40-78 %) and tested as high affinity ATP chemo-sensors.


Asunto(s)
Colorantes Fluorescentes , Microondas , Rodaminas , Fluoresceína
3.
Cancers (Basel) ; 15(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37345069

RESUMEN

Prostate cancer (PC) is the second most common cancer in men worldwide. More than 65% of men diagnosed with PC are above 65. Patients with localized PC show high long-term survival, however with the disease progression into a metastatic form, it becomes incurable, even after strong radio- and/or chemotherapy. Sphingosine 1-phosphate (S1P) is a bioactive lipid that participates in all the steps of oncogenesis including tumor cell proliferation, survival, migration, invasion, and metastatic spread. The S1P-producing enzymes sphingosine kinases 1 and 2 (SK1 and SK2), and the S1P degrading enzyme S1P lyase (SPL), have been shown to be highly implicated in the onset, development, and therapy resistance of PC during the last 20 years. In this review, the most important studies demonstrating the role of S1P and S1P metabolic partners in PC are discussed. The different in vitro, ex vivo, and in vivo models of PC that were used to demonstrate the implication of S1P metabolism are especially highlighted. Furthermore, the most efficient molecules targeting S1P metabolism that are under preclinical and clinical development for curing PC are summarized. Finally, the possibility of targeting S1P metabolism alone or combined with other therapies in the foreseeable future as an alternative option for PC patients is discussed. Research Strategy: PubMed from INSB was used for article research. First, key words "prostate & sphingosine" were used and 144 articles were found. We also realized other combinations of key words as "prostate cancer bone metastasis" and "prostate cancer treatment". We used the most recent reviews to illustrate prostate cancer topic and sphingolipid metabolism overview topic.

4.
Transl Res ; 251: 2-13, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35724933

RESUMEN

Calcium accumulation in atherosclerotic plaques predicts cardiovascular mortality, but the mechanisms responsible for plaque calcification and how calcification impacts plaque stability remain debated. Tissue-nonspecific alkaline phosphatase (TNAP) recently emerged as a promising therapeutic target to block cardiovascular calcification. In this study, we sought to investigate the effect of the recently developed TNAP inhibitor SBI-425 on atherosclerosis plaque calcification and progression. TNAP levels were investigated in ApoE-deficient mice fed a high-fat diet from 10 weeks of age and in plaques from the human ECLAGEN biocollection (101 calcified and 14 non-calcified carotid plaques). TNAP was inhibited in mice using SBI-425 administered from 10 to 25 weeks of age, and in human vascular smooth muscle cells (VSMCs) with MLS-0038949. Plaque calcification was imaged in vivo with 18F-NaF-PET/CT, ex vivo with osteosense, and in vitro with alizarin red. Bone architecture was determined with µCT. TNAP activation preceded and predicted calcification in human and mouse plaques, and TNAP inhibition prevented calcification in human VSMCs and in ApoE-deficient mice. More unexpectedly, TNAP inhibition reduced the blood levels of cholesterol and triglycerides, and protected mice from atherosclerosis, without impacting the skeletal architecture. Metabolomics analysis of liver extracts identified phosphocholine as a substrate of liver TNAP, who's decreased dephosphorylation upon TNAP inhibition likely reduced the release of cholesterol and triglycerides into the blood. Systemic inhibition of TNAP protects from atherosclerosis, by ameliorating dyslipidemia, and preventing plaque calcification.


Asunto(s)
Aterosclerosis , Calcinosis , Dislipidemias , Placa Aterosclerótica , Ratones , Humanos , Animales , Fosfatasa Alcalina , Músculo Liso Vascular , Tomografía Computarizada por Tomografía de Emisión de Positrones , Aterosclerosis/etiología , Aterosclerosis/prevención & control , Apolipoproteínas E , Triglicéridos
5.
Chembiochem ; 24(3): e202200513, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36420688

RESUMEN

Two florescent xanthene-cyanamide lysosomal trackers emitting strongly at ∼525 nm were prepared from fluorescein and rhodol methyl esters in microwave-assisted reactions. Both forms named "off" (nonfluorescent lactam) and "on" (strongly fluorescent ring-opened amide) have been comprehensively characterized out by using a combination of NMR spectroscopy, X-ray analysis, fluorimetry and confocal microscopy. Known rhodamines bearing electron-withdrawing groups (EWGs) exhibit an equilibrium between non-fluorescent (off) and fluorescent (on) depending on the dielectric constant of the medium. Here, cyanamide was introduced as EWG amine into the fluorescein and rhodol framework. Unlike rhodamine-type dyes, the ring-opened forms of fluorescein- and rhodol-cyanamides are stable in protic solvents under circumneutral and basic pH conditions. The osteoblastic cell line MC3T3-E1 from C57BL/6 mouse calvaria was used for confocal imaging where the different organelles and nuclei were distinguished by using an orthogonal combination of fluorescent dyes.


Asunto(s)
Cianamida , Colorantes Fluorescentes , Ratones , Animales , Ratones Endogámicos C57BL , Colorantes Fluorescentes/química , Rodaminas/química , Fluoresceína , Lisosomas
6.
Biomolecules ; 14(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38254642

RESUMEN

Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts, and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles) and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or bone or cartilage tissues to an enzymatic treatment. Several pieces of experimental evidence indicated that matrix vesicles and media vesicles isolated from the same types of mineralizing cells have distinct lipid and protein composition as well as functions. These findings support the view that matrix vesicles and media vesicles released by mineralizing cells have different functions in mineralized tissues due to their location, which is anchored to the extracellular matrix versus free-floating.


Asunto(s)
Calcinosis , Vesículas Extracelulares , Humanos , Matriz Extracelular , Condrocitos , Hipertrofia
7.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499456

RESUMEN

Matrix vesicles (MVs) contain the whole machinery necessary to initiate apatite formation in their lumen. We suspected that, in addition to tissue-nonspecific alkaline phosphatase (TNAP), Na,K,-ATPase (NKA) could be involved in supplying phopshate (Pi) in the early stages of MV-mediated mineralization. MVs were extracted from the growth plate cartilage of chicken embryos. Their average mean diameters were determined by Dynamic Light Scattering (DLS) (212 ± 19 nm) and by Atomic Force Microcopy (AFM) (180 ± 85 nm). The MVs had a specific activity for TNAP of 9.2 ± 4.6 U·mg-1 confirming that the MVs were mineralization competent. The ability to hydrolyze ATP was assayed by a colorimetric method and by 31P NMR with and without Levamisole and SBI-425 (two TNAP inhibitors), ouabain (an NKA inhibitor), and ARL-67156 (an NTPDase1, NTPDase3 and Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) competitive inhibitor). The mineralization profile served to monitor the formation of precipitated calcium phosphate complexes, while IR spectroscopy allowed the identification of apatite. Proteoliposomes containing NKA with either dipalmitoylphosphatidylcholine (DPPC) or a mixture of 1:1 of DPPC and dipalmitoylphosphatidylethanolamine (DPPE) served to verify if the proteoliposomes were able to initiate mineral formation. Around 69-72% of the total ATP hydrolysis by MVs was inhibited by 5 mM Levamisole, which indicated that TNAP was the main enzyme hydrolyzing ATP. The addition of 0.1 mM of ARL-67156 inhibited 8-13.7% of the total ATP hydrolysis in MVs, suggesting that NTPDase1, NTPDase3, and/or NPP1 could also participate in ATP hydrolysis. Ouabain (3 mM) inhibited 3-8% of the total ATP hydrolysis by MVs, suggesting that NKA contributed only a small percentage of the total ATP hydrolysis. MVs induced mineralization via ATP hydrolysis that was significantly inhibited by Levamisole and also by cleaving TNAP from MVs, confirming that TNAP is the main enzyme hydrolyzing this substrate, while the addition of either ARL-6715 or ouabain had a lesser effect on mineralization. DPPC:DPPE (1:1)-NKA liposome in the presence of a nucleator (PS-CPLX) was more efficient in mineralizing compared with a DPPC-NKA liposome due to a better orientation of the NKA active site. Both types of proteoliposomes were able to induce apatite formation, as evidenced by the presence of the 1040 cm-1 band. Taken together, the findings indicated that the hydrolysis of ATP was dominated by TNAP and other phosphatases present in MVs, while only 3-8% of the total hydrolysis of ATP could be attributed to NKA. It was hypothesized that the loss of Na/K asymmetry in MVs could be caused by a complete depletion of ATP inside MVs, impairing the maintenance of symmetry by NKA. Our study carried out on NKA-liposomes confirmed that NKA could contribute to mineral formation inside MVs, which might complement the known action of PHOSPHO1 in the MV lumen.


Asunto(s)
Calcinosis , Monoéster Fosfórico Hidrolasas , Animales , Embrión de Pollo , Monoéster Fosfórico Hidrolasas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio , Calcificación Fisiológica , Fosfatasa Alcalina/metabolismo , Hidrólisis , Adenosina Trifosfato , Liposomas/química , Minerales/metabolismo
8.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012211

RESUMEN

The biochemical machinery involved in matrix vesicles-mediated bone mineralization involves a specific set of lipids, enzymes, and proteins. Annexins, among their many functions, have been described as responsible for the formation and stabilization of the matrix vesicles' nucleational core. However, the specific role of each member of the annexin family, especially in the presence of type-I collagen, remains to be clarified. To address this issue, in vitro mineralization was carried out using AnxA6 (in solution or associated to the proteoliposomes) in the presence or in the absence of type-I collagen, incubated with either amorphous calcium phosphate (ACP) or a phosphatidylserine-calcium phosphate complex (PS-CPLX) as nucleators. Proteoliposomes were composed of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylcholine: 1,2-dipalmitoylphosphatidylserine (DPPC:DPPS), and DPPC:Cholesterol:DPPS to mimic the outer and the inner leaflet of the matrix vesicles membrane as well as to investigate the effect of the membrane fluidity. Kinetic parameters of mineralization were calculated from time-dependent turbidity curves of free Annexin A6 (AnxA6) and AnxA6-containing proteoliposomes dispersed in synthetic cartilage lymph. The chemical composition of the minerals formed was investigated by Fourier transform infrared spectroscopy (FTIR). Free AnxA6 and AnxA6-proteoliposomes in the presence of ACP were not able to propagate mineralization; however, poorly crystalline calcium phosphates were formed in the presence of PS-CPLX, supporting the role of annexin-calcium-phosphatidylserine complex in the formation and stabilization of the matrix vesicles' nucleational core. We found that AnxA6 lacks nucleation propagation capacity when incorporated into liposomes in the presence of PS-CPLX and type-I collagen. This suggests that AnxA6 may interact either with phospholipids, forming a nucleational core, or with type-I collagen, albeit less efficiently, to induce the nucleation process.


Asunto(s)
Anexina A6 , Calcinosis , 1,2-Dipalmitoilfosfatidilcolina/química , Anexina A6/metabolismo , Colágeno/metabolismo , Humanos , Fosfatos/metabolismo , Fosfatidilserinas/química , Proteolípidos
9.
J Biomed Mater Res B Appl Biomater ; 110(2): 338-349, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34289232

RESUMEN

A new generation of ceramic on ceramic (BIOLOX ®delta) bearings has emerged more than 10 years ago proving a high resistance to wear and good clinical results. However, biological reactions to wear debris, particularly the nanoparticles, need to be evaluated. The first originality of this study is to start from real wear particles obtained by the hip walking simulator (CERsim). These particles were compared with particles obtained by usual methods to assess the biocompatibility of materials: press machine (CERpress). Two ranges of ceramic particles were thus observed: ceramic particles with micron (intergranular fractures) and nano sizes (intragranular fractures), and characterized compared to ultra-high molecular weight polyethylene (UHMWPE). The second originality of this work is to assess the cellular reaction using the primary joint chondrocyte cultures simulating the osteogenesis process and not the cell lines, which are used to simulate the biological reaction of osteolysis. The first results showed a significant difference in cell viability between the cells in contact with particles from the walking simulator and those obtained with the press machine. On the other hand, it was found that the way of extraction of the particles from the lubricant could significantly affect the biological reaction. More interestingly, nano-sized ceramic particles showed a significant impact on the secretion of functional inflammatory mediators, agreeing with recent results in vivo. These novel methods of characterizing the osteogenic impact of UHMWPE and ceramic wear debris can complement the conventional expertise method focusing previously on the osteolysis aspect.


Asunto(s)
Prótesis de Cadera , Cerámica , Condrocitos , Prótesis de Cadera/efectos adversos , Humanos , Ensayo de Materiales , Osteogénesis , Polietilenos , Falla de Prótesis , Caminata
10.
J Extracell Biol ; 1(1): e34, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38938684

RESUMEN

Extracellular vesicles (EVs) are lipid bilayer-enclosed nanosized particles released by all cell types during physiological as well as pathophysiological processes to carry out diverse biological functions, including acting as sources of cellular dumping, signalosomes and mineralisation nanoreactors. The ability of EVs to perform specific biological functions is due to their biochemical machinery. Among the components of the EVs' biochemical machinery, surface proteins are of critical functional significance as they mediate the interactions of EVs with components of the extracellular milieu, the extracellular matrix and neighbouring cells. Surface proteins are thought to be native, that is, pre-assembled on the EVs' surface by the parent cells before the vesicles are released. However, numerous pieces of evidence have suggested that soluble proteins are acquired by the EVs' surface from the extracellular milieu and further modulate the biological functions of EVs during innate and adaptive immune responses, autoimmune disorders, complement activation, coagulation, viral infection and biomineralisation. Herein, we will describe the methods currently used to identify the EVs' surface proteins and discuss recent knowledge on the functional relevance of the soluble proteins acquired by EVs.

11.
J Extracell Biol ; 1(4): e38, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38939118

RESUMEN

Matrix vesicles (MVs) are 100-300 nm spherical structures released by mineralization competent cells to initiate formation of apatite, the mineral component in bones. Among proteins present in MVs, annexin A6 (AnxA6) is thought to be ubiquitously distributed in the MVs' lumen, on the surface of the internal and external leaflets of the membrane and also inserted in the lipid bilayer. To determine the molecular mechanism(s) that lead to the different locations of AnxA6, we hypothesized the occurrence of a pH drop during the mineralization. Such a change would induce the AnxA6 protonation, which in turn, and because of its isoelectric point of 5.41, would change the protein hydrophobicity facilitating its insertion into the MVs' bilayer. The various distributions of AnxA6 are likely to disturb membrane phospholipid organization. To examine this possibility, we used fluorescein as pH reporter, and established that pH decreased inside MVs during apatite formation. Then, 4-(14-phenyldibenzo[a,c]phenazin-9(14H)-yl)-phenol, a vibration-induced emission fluorescent probe, was used as a reporter of changes in membrane organization occurring with the varying mode of AnxA6 binding. Proteoliposomes containing AnxA6 and 1,2-Dimyristoyl-sn-glycero-3phosphocholine (DMPC) or 1,2-Dimyristoyl-sn-glycero-3phosphocholine: 1,2-Dipalmitoyl-sn-glycero-3-phosphoserine (DMPC:DPPS 9:1), to mimic the external and internal MV membrane leaflet, respectively, served as biomimetic models to investigate the nature of AnxA6 binding. Addition of Anx6 to DMPC at pH 7.4 and 5.4, or DMPC:DPPS (9:1) at pH 7.4 induced a decrease in membrane fluidity, consistent with AnxA6 interactions with the bilayer surface. In contrast, AnxA6 addition to DMPC:DPPS (9:1) at pH 5.4 increased the fluidity of the membrane. This latest result was interpreted as reflecting the insertion of AnxA6 into the bilayer. Taken together, these findings point to a possible mechanism of AnxA6 translocation in MVs from the surface of the internal leaflet into the phospholipid bilayer stimulated upon acidification of the MVs' lumen during formation of apatite.

12.
Int J Mol Sci ; 22(6)2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33799449

RESUMEN

(1) Background: Tissue non-specific alkaline phosphatase (TNAP) is suspected to induce atherosclerosis plaque calcification. TNAP, during physiological mineralization, hydrolyzes the mineralization inhibitor inorganic pyrophosphate (PPi). Since atherosclerosis plaques are characterized by the presence of necrotic cells that probably release supraphysiological concentrations of ATP, we explored whether this extracellular adenosine triphosphate (ATP) is hydrolyzed into the mineralization inhibitor PPi or the mineralization stimulator inorganic phosphate (Pi), and whether TNAP is involved. (2) Methods: Murine aortic smooth muscle cell line (MOVAS cells) were transdifferentiated into chondrocyte-like cells in calcifying medium, containing ascorbic acid and ß-glycerophosphate. ATP hydrolysis rates were determined in extracellular medium extracted from MOVAS cultures during their transdifferentiation, using 31P-NMR and IR spectroscopy. (3) Results: ATP and PPi hydrolysis by MOVAS cells increased during transdifferentiation. ATP hydrolysis was sequential, yielding adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine without any detectable PPi. The addition of levamisole partially inhibited ATP hydrolysis, indicating that TNAP and other types of ectonucleoside triphoshatediphosphohydrolases contributed to ATP hydrolysis. (4) Conclusions: Our findings suggest that high ATP levels released by cells in proximity to vascular smooth muscle cells (VSMCs) in atherosclerosis plaques generate Pi and not PPi, which may exacerbate plaque calcification.


Asunto(s)
Aterosclerosis/genética , Transdiferenciación Celular/genética , Difosfatos/metabolismo , Calcificación Vascular/genética , Adenosina Trifosfato , Fosfatasa Alcalina/genética , Animales , Aorta/citología , Aorta/metabolismo , Ácido Ascórbico/farmacología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Condrocitos/metabolismo , Condrocitos/patología , Glicerofosfatos/genética , Glicerofosfatos/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Fosfatos/metabolismo , Calcificación Vascular/metabolismo , Calcificación Vascular/patología
13.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924370

RESUMEN

The mineralization process is initiated by osteoblasts and chondrocytes during intramembranous and endochondral ossifications, respectively. Both types of cells release matrix vesicles (MVs), which accumulate Pi and Ca2+ and form apatites in their lumen. Tissue non-specific alkaline phosphatase (TNAP), a mineralization marker, is highly enriched in MVs, in which it removes inorganic pyrophosphate (PPi), an inhibitor of apatite formation. MVs then bud from the microvilli of mature osteoblasts or hypertrophic chondrocytes and, thanks to the action of the acto-myosin cortex, become released to the extracellular matrix (ECM), where they bind to collagen fibers and propagate mineral growth. In this report, we compared the mineralization ability of human fetal osteoblastic cell line (hFOB 1.19 cells) with that of osteosarcoma cell line (Saos-2 cells). Both types of cells were able to mineralize in an osteogenic medium containing ascorbic acid and beta glycerophosphate. The composition of calcium and phosphate compounds in cytoplasmic vesicles was distinct from that in extracellular vesicles (mostly MVs) released after collagenase-digestion. Apatites were identified only in MVs derived from Saos-2 cells, while MVs from hFOB 1.19 cells contained amorphous calcium phosphate complexes. In addition, AnxA6 and AnxA2 (nucleators of mineralization) increased mineralization in the sub-membrane region in strongly mineralizing Saos-2 osteosarcoma, where they co-localized with TNAP, whereas in less mineralizing hFOB 1.19 osteoblasts, AnxA6, and AnxA2 co-localizations with TNAP were less visible in the membrane. We also observed a reduction in the level of fetuin-A (FetuA), an inhibitor of mineralization in ECM, following treatment with TNAP and Ca channels inhibitors, especially in osteosarcoma cells. Moreover, a fraction of FetuA was translocated from the cytoplasm towards the plasma membrane during the stimulation of Saos-2 cells, while this displacement was less pronounced in stimulated hFOB 19 cells. In summary, osteosarcoma Saos-2 cells had a better ability to mineralize than osteoblastic hFOB 1.19 cells. The formation of apatites was observed in Saos-2 cells, while only complexes of calcium and phosphate were identified in hFOB 1.19 cells. This was also evidenced by a more pronounced accumulation of AnxA2, AnxA6, FetuA in the plasma membrane, where they were partly co-localized with TNAP in Saos-2 cells, in comparison to hFOB 1.19 cells. This suggests that both activators (AnxA2, AnxA6) and inhibitors (FetuA) of mineralization were recruited to the membrane and co-localized with TNAP to take part in the process of mineralization.


Asunto(s)
Anexina A2/metabolismo , Anexina A6/metabolismo , Calcificación Fisiológica , Osteoblastos/metabolismo , Osteosarcoma/metabolismo , alfa-2-Glicoproteína-HS/metabolismo , Fosfatasa Alcalina/metabolismo , Calcio/metabolismo , Línea Celular Tumoral , Forma de la Célula , Humanos , Fósforo/metabolismo
14.
Int J Biol Macromol ; 166: 1131-1140, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33161081

RESUMEN

Phospholipase D (PLD) is a ubiquitous enzyme that cleaves the distal phosphoester bond of phospholipids generating phosphatidic acid (PA). In plants, PA is involved in numerous cell responses triggered by stress. Similarly, in mammals, PA is also a second messenger involved in tumorigenesis. PLD is nowadays considered as a therapeutic target and blocking its activity with specific inhibitors constitutes a promising strategy to treat cancers. Starting from already described PLD inhibitors, this study aims to investigate the effect of their structural modifications on the enzyme's activity, as well as identifying new potent inhibitors of eukaryotic PLDs. Being able to purify the plant PLD from Vigna unguiculata (VuPLD), we obtained a SAXS model of its structure. We then used a fluorescence-based test suitable for high-throughput screening to review the effect of eukaryotic PLD inhibitors described in the literature. In this regard, we found that only few molecules were in fact able to inhibit VuPLD and we confirmed that vanadate is the most potent of all with an IC50 around 58 µM. Moreover, the small-scale screening of a chemical library of 3120 compounds allowed us to optimize the different screening's steps and paved the way towards the discovery of new potent inhibitors.


Asunto(s)
Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/farmacología , Fosfolipasa D/antagonistas & inhibidores , Alcoholes/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Hidrólisis , Fosfolipasa D/metabolismo , Sales (Química)/farmacología , Dispersión del Ángulo Pequeño , Vanadatos/farmacología , Vigna/enzimología , Difracción de Rayos X
15.
J Struct Biol ; 212(2): 107607, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32858148

RESUMEN

Bone biomineralization is an exquisite process by which a hierarchically organized mineral matrix is formed. Growing evidence has uncovered the involvement of one class of extracellular vesicles, named matrix vesicles (MVs), in the formation and delivery of the first mineral nuclei to direct collagen mineralization. MVs are released by mineralization-competent cells equipped with a specific biochemical machinery to initiate mineral formation. However, little is known about the mechanisms by which MVs can trigger this process. Here, we present a combination of in situ investigations and ex vivo analysis of MVs extracted from growing-femurs of chicken embryos to investigate the role played by phosphatidylserine (PS) in the formation of mineral nuclei. By using self-assembled Langmuir monolayers, we reconstructed the nucleation core - a PS-enriched motif thought to trigger mineral formation in the lumen of MVs. In situ infrared spectroscopy of Langmuir monolayers and ex situ analysis by transmission electron microscopy evidenced that mineralization was achieved in supersaturated solutions only when PS was present. PS nucleated amorphous calcium phosphate that converted into biomimetic apatite. By using monolayers containing lipids extracted from native MVs, mineral formation was also evidenced in a manner that resembles the artificial PS-enriched monolayers. PS-enrichment in lipid monolayers creates nanodomains for local increase of supersaturation, leading to the nucleation of ACP at the interface through a multistep process. We posited that PS-mediated nucleation could be a predominant mechanism to produce the very first mineral nuclei during MV-driven bone/cartilage biomineralization.


Asunto(s)
Biomineralización/fisiología , Fosfatos de Calcio/metabolismo , Lípidos/fisiología , Fosfatidilserinas/metabolismo , Animales , Apatitas/metabolismo , Biomimética/métodos , Calcificación Fisiológica/fisiología , Calcio/metabolismo , Cartílago/metabolismo , Pollos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Fémur/metabolismo , Microscopía Electrónica de Transmisión/métodos
16.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165919, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32800947

RESUMEN

Prostate cancer (PCa) is the most frequent cancer in men aged 65 and over. PCa mainly metastasizes in the bone, forming osteosclerotic lesions, inducing pain, fractures, and nerve compression. Cancer cell-derived exosomes participate in the metastatic spread, ranging from oncogenic reprogramming to the formation of pre-metastatic niches. Moreover, exosomes were recently involved in the dialog between PCa cells and the bone metastasis microenvironment. Phospholipase D (PLD) isoforms PLD1/2 catalyze the hydrolysis of phosphatidylcholine to yield phosphatidic acid (PA), regulating tumor progression and metastasis. PLD is suspected to play a role in exosomes biogenesis. We aimed to determine whether PCa-derived exosomes, through PLD, interact with the bone microenvironment, especially osteoblasts, during the metastatic process. Here we demonstrate for the first time that PLD2 is present in exosomes of C4-2B and PC-3 cells. C4-2B-derived exosomes activate proliferation and differentiation of osteoblasts models, by stimulating ERK 1/2 phosphorylation, by increasing the tissue-nonspecific alkaline phosphatase activity and the expression of osteogenic differentiation markers. Contrariwise, when C4-2B exosomes are generated in the presence of halopemide, a PLD pan-inhibitor, they lose their ability to stimulate osteoblasts. Furthermore, the number of released exosomes diminishes significantly (-40%). When the PLD product PA is combined with halopemide, exosome secretion is fully restored. Taken together, our results indicate that PLD2 stimulates exosome secretion in PCa cell models as well as their ability to increase osteoblast activity. Thus, PLD2 could be considered as a potent player in the establishment of PCa bone metastasis acting through tumor cell derived-exosomes.


Asunto(s)
Diferenciación Celular , Osteoblastos/citología , Osteoblastos/metabolismo , Fosfolipasa D/metabolismo , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Células 3T3 , Animales , Células Cultivadas , Exosomas/metabolismo , Humanos , Masculino , Ratones
17.
Mol Cell Biochem ; 473(1-2): 263-279, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32661773

RESUMEN

Prostate cancer (PCa) is the most frequent cancer among men and the first cause of death over 65. Approximately 90% of patients with advanced disease will develop bone metastasis, which dramatically reduces long-term survival. Therefore, effective therapies need to be developed, especially when disease is still well-localized. Phospholipase D (PLD), an enzyme that hydrolyzes phosphatidylcholine to yield phosphatidic acid, regulates several cellular functions as proliferation, survival, migration or vesicular trafficking. PLD is implicated in numerous diseases such as neurodegenerative, cardiovascular, autoimmune disorders or cancer. Indeed, PLD controls different aspects of oncogenesis including tumor progression and resistance to targeted therapies such as radiotherapy. PLD1 and PLD2 are the only isoforms with catalytic activity involved in cancer. Surprisingly, studies deciphering the role of PLD in the pathophysiology of PCa are scarce. Here we describe the correlation between PLD activity and PLD1 and PLD2 expression in PCa bone metastasis-derived cell lines C4-2B and PC-3. Next, by using PLD pharmacological inhibitors and RNA interference strategy, we validate the implication of PLD1 and PLD2 in cell viability, clonogenicity and proliferation of C4-2B and PC-3 cells and in migration capacity of PC-3 cells. Last, we show an increase in PLD activity as well as PLD2 protein expression during controlled starvation of PC-3 cells, concomitant with an augmentation of its migration capacity. Specifically, upregulation of PLD activity appears to be PKC-independent. Taken together, our results indicate that PLD, and in particular PLD2, could be considered as a potential therapeutic target for the treatment of PCa-derived bone metastasis.


Asunto(s)
Carcinogénesis/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfolipasa D/metabolismo , Neoplasias de la Próstata/enzimología , Carcinogénesis/genética , Carcinogénesis/patología , Humanos , Masculino , Proteínas de Neoplasias/genética , Células PC-3 , Fosfolipasa D/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
18.
Langmuir ; 36(19): 5134-5144, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32338922

RESUMEN

Lipid-based carriers such as liposomes represent one of the most advanced classes of drug delivery systems. Their clinical success relies on their composition, similar to that of the cell membrane. Their cellular specificity often relies on a ligand-receptor interaction. Although differences in the physicochemical properties of the cell membrane between tumor and nontumor cells have been reported, they are not systematically used for drug delivery purposes. In this report, a new approach was developed to ensure selective targeting based on physical compatibility between the target and the carrier membranes. By modulating the liposome composition and thus its membrane fluidity, we achieved selective targeting on four cancer cell lines of varying aggressiveness. Furthermore, using membrane-embedded and inner core-encapsulated fluorophores, we assessed the mechanism of this interaction to be based on the fusion of the liposome with the cell membranes. Membrane fluidity is therefore a major parameter to be considered when designing lipid drug carriers as a promising, lower cost alternative to current targeting strategies based on covalent grafting.


Asunto(s)
Fluidez de la Membrana , Neoplasias , Sistemas de Liberación de Medicamentos , Humanos , Lípidos , Liposomas , Neoplasias/tratamiento farmacológico
19.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085611

RESUMEN

Annexin A6 (AnxA6) is the largest member of the annexin family of proteins present in matrix vesicles (MVs). MVs are a special class of extracellular vesicles that serve as a nucleation site during cartilage, bone, and mantle dentin mineralization. In this study, we assessed the localization of AnxA6 in the MV membrane bilayer using native MVs and MV biomimetics. Biochemical analyses revealed that AnxA6 in MVs can be divided into three distinct groups. The first group corresponds to Ca2+-bound AnxA6 interacting with the inner leaflet of the MV membrane. The second group corresponds to AnxA6 localized on the surface of the outer leaflet. The third group corresponds to AnxA6 inserted in the membrane's hydrophobic bilayer and co-localized with cholesterol (Chol). Using monolayers and proteoliposomes composed of either dipalmitoylphosphatidylcholine (DPPC) to mimic the outer leaflet of the MV membrane bilayer or a 9:1 DPPC:dipalmitoylphosphatidylserine (DPPS) mixture to mimic the inner leaflet, with and without Ca2+, we confirmed that, in agreement with the biochemical data, AnxA6 interacted differently with the MV membrane. Thermodynamic analyses based on the measurement of surface pressure exclusion (πexc), enthalpy (ΔH), and phase transition cooperativity (Δt1/2) showed that AnxA6 interacted with DPPC and 9:1 DPPC:DPPS systems and that this interaction increased in the presence of Chol. The selective recruitment of AnxA6 by Chol was observed in MVs as probed by the addition of methyl-ß-cyclodextrin (MßCD). AnxA6-lipid interaction was also Ca2+-dependent, as evidenced by the increase in πexc in negatively charged 9:1 DPPC:DPPS monolayers and the decrease in ΔH in 9:1 DPPC:DPPS proteoliposomes caused by the addition of AnxA6 in the presence of Ca2+ compared to DPPC zwitterionic bilayers. The interaction of AnxA6 with DPPC and 9:1 DPPC:DPPS systems was distinct even in the absence of Ca2+ as observed by the larger change in Δt1/2 in 9:1 DPPC:DPPS vesicles as compared to DPPC vesicles. Protrusions on the surface of DPPC proteoliposomes observed by atomic force microscopy suggested that oligomeric AnxA6 interacted with the vesicle membrane. Further work is needed to delineate possible functions of AnxA6 at its different localizations and ways of interaction with lipids.


Asunto(s)
Anexina A6/metabolismo , Calcificación Fisiológica , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Rastreo Diferencial de Calorimetría , Colesterol/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Microdominios de Membrana/metabolismo , Microscopía de Fuerza Atómica , Proteolípidos/metabolismo
20.
Bone ; 130: 115087, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31648078

RESUMEN

Sphingolipids display important functions in various pathologies such as cancer, obesity, diabetes, cardiovascular or neurodegenerative diseases. Sphingosine, sphingosine 1-phosphate (S1P), and ceramide are the central molecules of sphingolipid metabolism. Sphingosine kinases 1 and 2 (SK1 and SK2) catalyze the conversion of the sphingolipid metabolite sphingosine into S1P. The balance between the levels of S1P and its metabolic precursors ceramide and sphingosine has been considered as a switch that could determine whether a cell proliferates or dies. This balance, also called « sphingolipid rheostat ¼, is mainly under the control of SKs. Several studies have recently pointed out the contribution of SK/S1P metabolic pathway in skeletal development, mineralization and bone homeostasis. Indeed, SK/S1P metabolism participates in different diseases including rheumatoid arthritis, spondyloarthritis, osteoarthritis, osteoporosis, cancer-derived bone metastasis or calcification disorders as vascular calcification. In this review, we will summarize the most important data regarding the implication of SK/S1P axis in bone and joint diseases and ectopic calcification, and discuss the therapeutic potential of targeting SK/S1P metabolism for the treatment of these pathologies.


Asunto(s)
Neoplasias , Espondiloartritis , Humanos , Lisofosfolípidos , Esfingosina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...