Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Orthop Surg Res ; 19(1): 304, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769535

BACKGROUND: Periprosthetic joint infection is a serious complication following joint replacement. The development of bacterial biofilms bestows antibiotic resistance and restricts treatment via implant retention surgery. Electromagnetic induction heating is a novel technique for antibacterial treatment of metallic surfaces that has demonstrated in-vitro efficacy. Previous studies have always employed stationary, non-portable devices. This study aims to assess the in-vitro efficacy of induction-heating disinfection of metallic surfaces using a new Portable Disinfection System based on Induction Heating. METHODS: Mature biofilms of three bacterial species: S. epidermidis ATCC 35,984, S. aureus ATCC 25,923, E. coli ATCC 25,922, were grown on 18 × 2 mm cylindrical coupons of Titanium-Aluminium-Vanadium (Ti6Al4V) or Cobalt-chromium-molybdenum (CoCrMo) alloys. Study intervention was induction-heating of the coupon surface up to 70ºC for 210s, performed using the Portable Disinfection System (PDSIH). Temperature was monitored using thermographic imaging. For each bacterial strain and each metallic alloy, experiments and controls were conducted in triplicate. Bacterial load was quantified through scraping and drop plate techniques. Data were evaluated using non-parametric Mann-Whitney U test for 2 group comparison. Statistical significance was fixed at p ≤ 0.05. RESULTS: All bacterial strains showed a statistically significant reduction of CFU per surface area in both materials. Bacterial load reduction amounted to 0.507 and 0.602 Log10 CFU/mL for S. aureus on Ti6Al4V and CoCrMo respectively, 5.937 and 3.500 Log10 CFU/mL for E. coli, and 1.222 and 0.372 Log10 CFU/mL for S. epidermidis. CONCLUSIONS: Electromagnetic induction heating using PDSIH is efficacious to reduce mature biofilms of S aureus, E coli and S epidermidis growing on metallic surfaces of Ti6Al4V and CoCrMo alloys.


Alloys , Biofilms , Disinfection , Escherichia coli , Prosthesis-Related Infections , Staphylococcus aureus , Titanium , Biofilms/drug effects , Disinfection/methods , Escherichia coli/growth & development , Staphylococcus aureus/drug effects , Prosthesis-Related Infections/prevention & control , Prosthesis-Related Infections/microbiology , Staphylococcus epidermidis/drug effects , Joint Prosthesis/microbiology , Arthroplasty, Replacement/instrumentation , Arthroplasty, Replacement/methods , Heating/instrumentation , Heating/methods , Humans , Electromagnetic Phenomena , Vitallium
2.
Appl Environ Microbiol ; 90(2): e0189223, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38289132

The growing concern arising from viruses with pandemic potential and multi-resistant bacteria responsible for hospital-acquired infections and outbreaks of food poisoning has led to an increased awareness of indirect contact transmission. This has resulted in a renewed interest to confer antimicrobial properties to commonly used metallic materials. The present work provides a full characterization of optimized fluoride anodic films grown in stainless steel 304L as well as their antimicrobial properties. Antibacterial tests show that the anodic film, composed mainly of chromium and iron fluorides, reduces the count and the percentage of the area covered by 50% and 87.7% for Pseudomonas aeruginosa and Stenotrophomonas maltophilia, respectively. Virologic tests show that the same treatment reduces the infectivity of the coronavirus HCoV-229E-GFP, in comparison with the non-anodized stainless steel 304L.IMPORTANCEThe importance of environmental surfaces as a source of infection is a topic of particular interest today, as many microorganisms can survive on these surfaces and infect humans through direct contact. Modification of these surfaces by anodizing has been shown to be useful for some alloys of medical interest. This work evaluates the effect of anodizing on stainless steel, a metal widely used in a variety of applications. According to the study, the fluoride anodic layers reduce the colonization of the surfaces by both bacteria and viruses, thus reducing the risk of acquiring infections from these sources.


Anti-Infective Agents , Fluorides , Humans , Fluorides/pharmacology , Stainless Steel , Fomites , Bacteria , Anti-Infective Agents/pharmacology
4.
Expert Opin Pharmacother ; 24(10): 1113-1123, 2023.
Article En | MEDLINE | ID: mdl-37145964

INTRODUCTION: Mycobacterium marinum is a slowly growing photochromogenic nontuberculous mycobacterium that has special growth characteristics. It causes a uniquely human disease, a cutaneous syndrome named fish tank granuloma or swimming pool granuloma because of the strong epidemiological links with water. The treatment of this disease involves the use of different antimicrobials alone and in combination, depending on the severity of the disease. The antibiotics most frequently used are macrolides, tetracyclines, cotrimoxazole, quinolones, aminoglycosides, rifamycins, and ethambutol. Other approaches include the use of surgery in some cases. New treatment options, like new antibiotics, phage therapy, phototherapy, and others are currently being developed with good in vitro experimental results. In any case, the disease is usually a mild one, and the outcome is good in most of the treated patients. AREAS COVERED: We have searched the literature for treatment schemes and drugs used for treatment of M. marinum disease, as well as other therapeutic options. EXPERT OPINION: Medical treatment is the most recommended approach option, as M. marinum is usually susceptible to tetracyclines, quinolones, macrolides, cotrimoxazole, and some tuberculostatic drugs, usually used in a combined therapeutic scheme. Surgical treatment is an option that can be curative and diagnostic in small lesions.


Mycobacterium marinum , Skin Diseases, Bacterial , Animals , Humans , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Anti-Bacterial Agents/therapeutic use , Macrolides/therapeutic use , Skin Diseases, Bacterial/diagnosis , Skin Diseases, Bacterial/drug therapy
...