Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
ACS Appl Mater Interfaces ; 11(50): 46953-46964, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31742376

RESUMEN

In situ electrochemical diagnostics designed to probe ionomer interactions with platinum and carbon were applied to relate ionomer coverage and conformation, gleaned from anion adsorption data, with O2 transport resistance for low-loaded (0.05 mgPt cm-2) platinum-supported Vulcan carbon (Pt/Vu)-based electrodes in a polymer electrolyte fuel cell. Coupling the in situ diagnostic data with ex situ characterization of catalyst inks and electrode structures, the effect of ink composition is explained by both ink-level interactions that dictate the electrode microstructure during fabrication and the resulting local ionomer distribution near catalyst sites. Electrochemical techniques (CO displacement and ac impedance) show that catalyst inks with higher water content increase ionomer (sulfonate) interactions with Pt sites without significantly affecting ionomer coverage on the carbon support. Surprisingly, the higher anion adsorption is shown to have a minor impact on specific activity, while exhibiting a complex relationship with oxygen transport. Ex situ characterization of ionomer suspensions and catalyst/ionomer inks indicates that the lower ionomer coverage can be correlated with the formation of large ionomer aggregates and weaker ionomer/catalyst interactions in low-water content inks. These larger ionomer aggregates resulted in increased local oxygen transport resistance, namely, through the ionomer film, and reduced performance at high current density. In the water-rich inks, the ionomer aggregate size decreases, while stronger ionomer/Pt interactions are observed. The reduced ionomer aggregation improves transport resistance through the ionomer film, while the increased adsorption leads to the emergence of resistance at the ionomer/Pt interface. Overall, the high current density performance is shown to be a nonmonotonic function of ink water content, scaling with the local gas (H2, O2) transport resistance resulting from pore, thin film, and interfacial phenomena.

3.
Med Devices (Auckl) ; 7: 425-36, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25489252

RESUMEN

Endoluminal occlusion has been performed since the early beginning of interventional radiology. Over recent decades, major technological advances have improved the techniques used and different devices have been developed for changing conditions. Most of these occlusion devices have been implemented in the vascular territory. Early embolization materials included glass particles, hot contrast, paraffin, fibrin, and tissue fragments such as muscle fibers and blood clots; today, occlusion materials include metallic devices, particles, and liquid materials, which can be indicated for proximal or distal occlusion, high-flow and low-flow situations, and in large-caliber and small-caliber vessels, based on need. Technological progress has led to a decreased size of delivery catheters, and an increase in safety due to release systems that permit the withdrawing and replacement of embolization material. Furthermore, bioactive embolization materials have been developed to increase the efficacy of embolization or the biological effect of medication. Finally, materials have been modified for changing indications. Intravascular stents were initially developed to keep an artery open; however, by adding a covering membrane, these stents can be used to occlude the wall of a vessel or other endoluminal structures. This article gives an overview of the devices most utilized for occlusion of endoluminal structures, as well as their major purpose in the endovascular territory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...