Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(10): e20204, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37767471

RESUMEN

Lichens exist in an organismal organization of mycobiont, photobiont, and non-photoautotrophic bacteria. These organisms contribute to the growth of lichens even in poor nutrition substrates. However, studies on the isolation and application of non-photoautotrophic bacteria in plant growth and biocontrol are scanty. Therefore, a study was conducted to isolate and evaluate the potential of non-photoautotrophic bacteria from lichen tissues in maize plant growth promotion and biocontrol of plant pathogens (fungi and bacteria). Five bacterial strains were isolated and tested for their ability to produce indole-3-Acetic Acid (IAA). One bacterium named YZCUO202005 produced IAA, siderophores and biofilms, solubilized phosphate and potassium and exhibited extracellular enzymes (cellulases, proteases, amylase, and ß -1,3-Glucanase). Based on the 16S rRNA sequence analysis results, YZCUO202005 was identified as Bacillus licheniformis. The strain inhibited the growth of five pathogenic fungi with an inhibition percent of between 58.7% and 71.7% and two pathogenic bacteria. Under greenhouse conditions, YZCUO202005 was tested for its abilities to enhance maize seed germination, and vegetative growth. Compared with the control treatment, the strain significantly enhanced the growth of stem length (i.e. 18 ± 0.64 cm, 78 ± 0.92 cm), leaf length (i.e. 10 ± 0.36 cm, 57 ± 1.42 cm), leaf chlorophyll levels (i.e., 13 ± 0.40, 40 ± 0.43 SPAD), and root length (i.e, 9.8 ± 2.25 cm, 22.5 ± 6.59 cm). Our results demonstrated that B. licheniformis YZCUO202005 from lichens has the potential to promote plant growth and reduce fungal and bacterial pathogens' growth. Furthermore, the results suggest that lichens are naturally rich sources of plant growth promotion and biocontrol agents that would be used in agriculture.

2.
Physiol Mol Biol Plants ; 29(3): 361-376, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37033766

RESUMEN

Hydroxycinnamate-CoA quinate hydroxycinnamoyl transferase (HQT) enzyme affect plant secondary metabolism and are crucial for growth and development. To date, limited research on the genome-wide analysis of HQT family genes and their regulatory roles in chlorogenic acid (CGA) accumulation in leafy vegetable sweet potato is available. Here, a total of 58 HQT family genes in the sweet potato genome (named IbHQT) were identified and analyzed. We studied the chromosomal distribution, phylogenetic relationship, motifs distribution, collinearity, and cis-acting element analysis of HQT family genes. This study used two sweet potato varieties, high CGA content Fushu 7-6-14-7 (HC), and low CGA content Fushu 7-6 (LC). Based on the phylogenetic analysis, clade A was unique among the identified four clades as it contained HQT genes from various species. The chromosomal location and collinearity analysis revealed that tandem gene duplication may promote the IbHQT gene expansion and expression. The expression patterns and profile analysis showed changes in gene expression levels at different developmental stages and under cold, drought, and salt stress conditions. The expression analysis verified by qRT-PCR revealed that IbHQT genes were highly expressed in the HC variety leaves than in the LC variety. Furthermore, cloning and gene function analysis unveiled that IbHQT family genes are involved in the biosynthesis and accumulation of CGA in sweet-potato. This study expands our understanding of the regulatory role of HQT genes in sweet-potato and lays a foundation for further functional characterization and genetic breeding by engineering targeted HQT candidate genes in various sweet-potato varieties and other species. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01299-4.

3.
Insects ; 13(1)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35055916

RESUMEN

Bradysia odoriphaga is an agricultural pest in China's vegetable industry. In this study, pupae and adults were exposed to various non-lethal high-temperatures. The results demonstrated a decreased rate of eclosion once the pupae were exposed to temperatures exceeding 37 °C for 1 h. No effect on the lifespan of unmated female adults was observed after exposure to temperature stress, while unmated male adult lifespan decreased (>37 °C for 2 h). The size of the testis and ovaries for unmated male and female adults decreased, as did the fecundity and egg hatching rate for mated females. Compared with the control group (25 °C), the testis size of unmated male adults decreased after high-temperature stress followed by recovery at 25 °C for 1 h, though the size of the ovaries of female adults did not change. Additionally, the size of the testis and ovaries for unmated male and female adults decreased following high-temperature stress and 24 h of recovery at 25 °C. High temperatures affected males more than females; 37 °C is the critical temperature to control the population of B. odoriphaga. These results lay the foundation for the future development of environmentally friendly high-temperature prevention and pest-control strategies.

4.
AIMS Microbiol ; 8(4): 624-643, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36694581

RESUMEN

Beneficial endophytic bacteria influence their host plant to grow and resist pathogens. Despite the advantages of endophytic bacteria to their host, their application in agriculture has been low. Furthermore, many plant growers improperly use synthetic chemicals due to having no or little knowledge of the role of endophytic bacteria in plant growth, the prevention and control of pathogens and poor access to endobacterial bioproducts. These synthetic chemicals have caused soil infertility, environmental contamination, disruption to ecological cycles and the emergence of resistant pests and pathogens. There is more that needs to be done to explore alternative ways of achieving sustainable plant production while maintaining environmental health. In recent years, the use of beneficial endophytic bacteria has been noted to be a promising tool in promoting plant growth and the biocontrol of pathogens. Therefore, this review discusses the roles of endophytic bacteria in plant growth and the biocontrol of plant pathogens. Several mechanisms that endophytic bacteria use to alleviate plant biotic and abiotic stresses by helping their host plants acquire nutrients, enhance plant growth and development and suppress pathogens are explained. The review also indicates that there is a gap between research and general field applications of endophytic bacteria and suggests a need for collaborative efforts between growers at all levels. Furthermore, the presence of scientific and regulatory frameworks that promote advanced biotechnological tools and bioinoculants represents major opportunities in the applications of endophytic bacteria. The review provides a basis for future research in areas related to understanding the interactions between plants and beneficial endophytic microorganisms, especially bacteria.

5.
Plant Dis ; 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33529063

RESUMEN

Raspberry (Rubus rosaefolius Smith), also called march bubble or milk bubble, is widely distributed and economically important in China. Raspberries are rich in nutrients such as essential amino acids, vitamin C, dietary fiber, superoxide dismutase (SOD) and minerals (Yang et al. 2019). In May 2019, a leaf spot disease was observed on raspberry in Enshi (N29°07'10', E108°23'12'), Hubei province of China. The symptoms were small dark-brown spots (Fig.1) on over 90% of observed plants. To isolate the pathogen, leaf sections (5 mm × 3 mm) from the border of the symptomatic tissue were cut and sterilized with 75% ethanol for 30 s, followed by 2% sodium hypochlorite (NaClO) for 2 min, and then rinsed three times with sterile water. Leaf sections were placed on potato dextrose agar (PDA) medium amended with 25 µg / ml ampicillin and incubated at 25 °C in the dark for 3 days. Isolated colonies were sub-cultured on PDA by hyphal tip transfer. Eight fungal isolates with similar morphology, abundant white aerial hyphae, were collected. Colonies on PDA grew up to 80 mm in diameter by 7 days at 25 °C. The center of each colony became black (Fig.2). Conidia were unicellular, oval and hyaline. Conidia ranged in size from 14.5 to 19.75 µm × 5.80 to 10.20 µm (n=50) in 20% (v/v) V8 vegetable juice medium. No appressoria were observed. Morphological characteristics are similar to those of Colletotrichum spp. (Moriwaki et al. 2003). Total genomic DNA of a representative isolate S1 was extracted with a CTAB method (Stenglein et al. 2006). Internal transcribed spacer (ITS) region of rDNA, actin (ACT) , beta-tubulin (TUB2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were amplified and sequenced with the primer pairs of ITS4 / ITS5, ACT512F / ACT783R, Bt-2a / Bt-2b and GDF1 / GDR1, respectively (Weir et al. 2012). BLAST results showed that ITS, ACT, TUB2 and GAPDH gene sequences (GenBank accession nos. MN498030, MT780498, MT780496 and MT780497, respectively) were 99% identical to those of Colletotrichum boninense Moriwaki, Sato & Tsukiboshi (GenBank accession nos. MF076598, JX009583, JQ005588 and JX009905, respectively). Concatenated sequences of the four genes were used to conduct a phylogenetic analysis using neighbor-joining method in MEGA7 (Toussaint et al. 2016). The isolate S1 clustered with above C. boninense strains retrieved from NCBI database. Therefore, the present isolate S1 was identified as C. boninense. Pathogenicity tests were performed using one-month-old raspberry plants, 24 controls and 30 inoculated. The plants were sprayed with conidial suspension ( 106 conidia / mL) cultured on 20% (v/v) V8 vegetable juice medium for 15 days. The control plants were sprayed with sterile distilled water. All plants were covered with plastic bags 24h to maintain the relative humidity in the field. Fifteen days after inoculation, typical symptoms of brown spots were observed on leaves similar to the disease on field plants, while the leaves from the control group remained asymptomatic. C. boninense was reisolated and identified from inoculated symptomatic leaves. Anthracnose on raspberry caused by Colletotrichum gloeosporioides (Dai et al. 2013) and C. fioriniae (Schoeneberg et al. 2020) has previously been reported. However, to the best of our knowledge, this is the first report of Colletotrichum boninense causing leaf spot on Raspberry in China. If more reports of this pathogen are found on raspberries, then it may be necessary to develop effective management strategies for controlling this disease.

6.
Plant Dis ; 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32976077

RESUMEN

Akebia trifoliata (Thunb.) Koidz. is a species in the family Lardizabalaceae, which belongs to deciduous woody lianas. It is an important species of plant used in Chinese medicine. In July 2019, a leaf spot disease was observed on A. trifoliata in a nursery garden in Jingzhou (N 30° 21', E 112° 19'), Hubei Province, China. Symptoms initially appeared as small brown spots and subsequently developed into subcircular or irregular-shaped brown necrotic lesions. In severe cases, the leaves became completely necrotic and abscised. The incidence of leaf symptoms on affected plants ranged was between 30% and 40%. To isolate the pathogen, pieces of symptomatic leaves were collected and excised at the margins of lesions, surface disinfected with 70% ethanol and 0.1% HgCl2, rinsed three times with sterile water, placed on potato dextrose agar (PDA) amended with 50 µg/ml kanamycin, and incubated at 28°C in the dark for 3 days. Isolated colonies were subcultured by transferring hyphal tips. Six fungal isolates were isolated from the collected tissues. All six isolates had similar colony morphologies on on PDA and were composed of white flocculent aerial hyphae. The average radial growth rate of colonies after 7 days was 11.2 mm/d. Isolates were later cultured on 20% V8 juice agar for 20 days to encourage sporulation. Sporangia were produced on V8 media and were colorless, inverted, pear-shaped, and terminal, with obvious mastoid, 22 to 34 × 28 to 46µm (n=50); Oospores were light brown, and suborbicular, with thick wall, 18 to 26µm (n=20); Globose chlamydospores were light brown, and suborbicular, 12 to 32µm (n=50). Antheridia were not observed suggesting homothallism. These morphological charactertistics were identical to those reported for Phytophthora nicotianae (Erwin and Ribeiro 1996). We selected a single isolate 'B2', for molecular identification because it was the most aggressive in leaf pathogenicity assays. The internal transcribed spacer (ITS) region of rDNA was amplified and sequenced using primers ITS1/ITS4 (White et al. 1990). BLAST analyis revealed that the ITS sequence (GenBank accession nos. MT472132) was 100% identical to other P. nicotianae strains (GenBank accession nos. KJ754387). To fulfill Koch's postulates, a 50 ml zoospores suspension (106 spores/ml) of B2 was sprayed on the foliage of three 1-year-old healthy seedlings. Sterile distilled water to inoculate control plants. After 10 days, typical symptoms of dark brown spots were observed on all the inoculated leaves, while the control leaves remained asymptomatic. P. nicotianae was re-isolated from the inoculated, symptomatic leaves, thus confirming Koch's hypothesis. The experiment was repeated three times. To the best of our knowledge, this is the first report of P. nicotianae causing leaf spot on A. trifoliata in China. P. nicotianae is a common stramenopile pathogen that infects many plant hosts. The presence of this pathogen in an A. trifoliata nursery should be carefully considered to mitigate possible outbreaks of this disease in other fields in this growing region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...