Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138584

RESUMEN

Chronic lymphocytic leukaemia (CLL) is a malignancy of the immune B lymphocyte cells and is the most common leukaemia diagnosed in developed countries. In this paper, we report the synthesis and antiproliferative effects of a series of (E)-9-(2-nitrovinyl)anthracenes and related nitrostyrene compounds in CLL cell lines and also in Burkitt's lymphoma (BL) cell lines, a rare form of non-Hodgkin's immune B-cell lymphoma. The nitrostyrene scaffold was identified as a lead structure for the development of effective compounds targeting BL and CLL. The series of structurally diverse nitrostyrenes was synthesised via Henry-Knoevenagel condensation reactions. Single-crystal X-ray analysis confirmed the structure of (E)-9-chloro-10-(2-nitrobut-1-en-1-yl)anthracene (19f) and the related 4-(anthracen-9-yl)-1H-1,2,3-triazole (30a). The (E)-9-(2-nitrovinyl)anthracenes 19a, 19g and 19i-19m were found to elicit potent antiproliferative effects in both BL cell lines EBV-MUTU-1 (chemosensitive) and EBV+ DG-75 (chemoresistant) with >90% inhibition at 10 µM. Selected (E)-9-(2-nitrovinyl)anthracenes demonstrated potent antiproliferative activity in CLL cell lines, with IC50 values of 0.17 µM (HG-3) and 1.3 µM (PGA-1) for compound 19g. The pro-apoptotic effects of the most potent compounds 19a, 19g, 19i, 19l and 19m were demonstrated in both CLL cell lines HG-3 and PGA-1. The (E)-nitrostyrene and (E)-9-(2-nitrovinyl)anthracene series of compounds offer potential for further development as novel chemotherapeutics for CLL.


Asunto(s)
Linfoma de Burkitt , Leucemia Linfocítica Crónica de Células B , Humanos , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/patología , Linfocitos B/metabolismo , Línea Celular , Antracenos
2.
Bioorg Chem ; 141: 106877, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37804699

RESUMEN

The synthesis and biochemical activity of a series of chiral trans 3-hydroxyl ß-lactams targeting tubulin is described. Synthesis of the series of enantiopure ß-lactams was achieved using chiral derivatising reagent N-Boc-l-proline. The absolute configuration was determined as 3S,4S for (+) enantiomer 4EN1 and 3R,4R for (-) enantiomer 4EN2. Antiproliferative studies identified chiral 3S,4S b-lactams with subnanomolar IC50 values across a range of cancer cell lines, improving potency with respect to the corresponding racemates. Fluoro-substituted (+)-(3S,4S)-4-(3-fluoro-4-methoxyphenyl)-3-hydroxy-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (27EN1) was determined as the lead eutomer with dual antiproliferative activity in triple negative breast cancer cells (TNBC), and combretastatin A-4 resistant HT-29 colorectal cancer cells. IC50 values were in the range of 0.26-0.7 nM across four cell lines. Tubulin polymerisation assays, confocal microscopy and molecular modelling studies indicated that 3S,4S eutomers are microtubule destabilisers, while 3R,4R distomers have lower potency as microtubule destabilisers. 27EN1 demonstrated anti-mitotic and pro-apoptotic activity in MDA-MB-231 and HT-29 cells in addition to selective toxicity toward MCF-7 breast cancer versus non-tumorigenic MCF-10-2A cells. The related 3S,4S ß-lactam eutomer 4EN1 downregulated expression of key cell survival anti-apoptotic proteins Bcl-2 and Mcl-1 in MDA-MB-231 cells while 27EN1 downregulated Mcl-1 in HT-29 cells. Chiral ß-lactam 27EN1 will be further developed for treatment of TNBC and CA-4 resistant colorectal cancers.


Asunto(s)
Neoplasias Colorrectales , Neoplasias de la Mama Triple Negativas , Humanos , Lactamas/farmacología , Tubulina (Proteína)/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Relación Estructura-Actividad , Microtúbulos/metabolismo , beta-Lactamas/química , Neoplasias Colorrectales/tratamiento farmacológico
3.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37513912

RESUMEN

A series of novel 3-(prop-1-en-2-yl)azetidin-2-one, 3-allylazetidin-2-one and 3-(buta-1,3-dien-1-yl)azetidin-2-one analogues of combretastatin A-4 (CA-4) were designed and synthesised as colchicine-binding site inhibitors (CBSI) in which the ethylene bridge of CA-4 was replaced with a ß-lactam (2-azetidinone) scaffold. These compounds, together with related prodrugs, were evaluated for their antiproliferative activity, cell cycle effects and ability to inhibit tubulin assembly. The compounds demonstrated significant in vitro antiproliferative activities in MCF-7 breast cancer cells, particularly for compounds 9h, 9q, 9r, 10p, 10r and 11h, with IC50 values in the range 10-33 nM. These compounds were also potent in the triple-negative breast cancer (TBNC) cell line MDA-MB-231, with IC50 values in the range 23-33 nM, and were comparable with the activity of CA-4. The compounds inhibited the polymerisation of tubulin in vitro, with significant reduction in tubulin polymerization, and were shown to interact at the colchicine-binding site on tubulin. Flow cytometry demonstrated that compound 9q arrested MCF-7 cells in the G2/M phase and resulted in cellular apoptosis. The antimitotic properties of 9q in MCF-7 human breast cancer cells were also evaluated, and the effect on the organization of microtubules in the cells after treatment with compound 9q was observed using confocal microscopy. The immunofluorescence results confirm that ß-lactam 9q is targeting tubulin and resulted in mitotic catastrophe in MCF-7 cells. In silico molecular docking supports the hypothesis that the compounds interact with the colchicine-binding domain of tubulin. Compound 9q is a novel potent microtubule-destabilising agent with potential as a promising lead compound for the development of new antitumour agents.

4.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36986531

RESUMEN

The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.

5.
ChemistryOpen ; 12(6): e202200119, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35876400

RESUMEN

Trans-ß-lactam isomers have garnered much attention as anti-cancer microtubule targeting agents. Currently available synthetic methods are available for the preparation of enantiopure ß-lactams and favour isomeric cis/trans ß-lactam mixtures. Indirect chiral resolution offers the opportunity for isolation of exclusively enantiopure trans-ß-lactams. In this study, liquid chromatography chiral resolution of ß-lactams derivatized as diastereomer mixtures with a panel of N-protected amino acids is explored, where N-(Boc)-L-proline served as the optimal chiral derivatising reagent. High-performance liquid chromatography failed to adequately determine diastereomeric excess (de) of resolved diastereomers. Variable temperature, 1 H NMR and 2D EXSY spectroscopic analyses of proline-derivatised diastereomers were successfully employed to characterise equilibrating rotamers of resolved diastereomers and determine their de. Integration of resolved resonances corresponding to H3 and H4 of the ß-lactam ring served as a quantitative qNMR tool for the calculation of de following resolution.

6.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36145265

RESUMEN

The stilbene combretastatin A-4 (CA-4) is a potent microtubule-disrupting agent interacting at the colchicine-binding site of tubulin. In the present work, the synthesis, characterisation and mechanism of action of a series of 3-fluoro and 3,3-difluoro substituted ß-lactams as analogues of the tubulin-targeting agent CA-4 are described. The synthesis was achieved by a convenient microwave-assisted Reformatsky reaction and is the first report of 3-fluoro and 3,3-difluoro ß-lactams as CA-4 analogues. The ß-lactam compounds 3-fluoro-4-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxy phenyl)azetidin-2-one 32 and 3-fluoro-4-(3-fluoro-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one) 33 exhibited potent activity in MCF-7 human breast cancer cells with IC50 values of 0.075 µM and 0.095 µM, respectively, and demonstrated low toxicity in non-cancerous cells. Compound 32 also demonstrated significant antiproliferative activity at nanomolar concentrations in the triple-negative breast cancer cell line Hs578T (IC50 0.033 µM), together with potency in the invasive isogenic subclone Hs578Ts(i)8 (IC50 = 0.065 µM), while 33 was also effective in MDA-MB-231 cells (IC50 0.620 µM). Mechanistic studies demonstrated that 33 inhibited tubulin polymerisation, induced apoptosis in MCF-7 cells, and induced a downregulation in the expression of anti-apoptotic Bcl2 and survivin with corresponding upregulation in the expression of pro-apoptotic Bax. In silico studies indicated the interaction of the compounds with the colchicine-binding site, demonstrating the potential for further developing novel cancer therapeutics as microtubule-targeting agents.

7.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35455476

RESUMEN

This Special Issue of Pharmaceuticals is devoted to significant advances achieved in the field of Anticancer Drugs in 2021 [...].

8.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34832901

RESUMEN

Antimitotic drugs that target tubulin are among the most widely used chemotherapeutic agents; however, the development of multidrug resistance has limited their clinical activity. We report the synthesis and biological properties of a series of novel 3-chloro-ß-lactams and 3,3-dichloro-ß-lactams (2-azetidinones) that are structurally related to the tubulin polymerisation inhibitor and vascular targeting agent, Combretastatin A-4. These compounds were evaluated as potential tubulin polymerisation inhibitors and for their antiproliferative effects in breast cancer cells. A number of the compounds showed potent activity in MCF-7 breast cancer cells, e.g., compound 10n (3-chloro-4-(3-hydroxy-4-methoxy-phenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one) and compound 11n (3,3-dichloro-4-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-azetidin-2-one), with IC50 values of 17 and 31 nM, respectively, and displayed comparable cellular effects to those of Combretastatin A-4. Compound 10n demonstrated minimal cytotoxicity against non-tumorigenic HEK-293T cells and inhibited the in vitro polymerisation of tubulin with significant G2/M phase cell cycle arrest. Immunofluorescence staining of MCF-7 cells confirmed that ß-lactam 10n caused a mitotic catastrophe by targeting tubulin. In addition, compound 10n promoted apoptosis by regulating the expression of pro-apoptotic protein BAX and anti-apoptotic proteins Bcl-2 and Mcl-1. Molecular docking was used to explore the potential molecular interactions between novel 3-chloro-ß-lactams and the amino acid residues of the colchicine binding active site cavity of ß-tubulin. Collectively, these results suggest that 3-chloro-2-azetidinones, such as compound 10n, could be promising lead compounds for further clinical anti-cancer drug development.

9.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671674

RESUMEN

We report the synthesis and biochemical evaluation of compounds that are designed as hybrids of the microtubule targeting benzophenone phenstatin and the aromatase inhibitor letrozole. A preliminary screening in estrogen receptor (ER)-positive MCF-7 breast cancer cells identified 5-((2H-1,2,3-triazol-1-yl)(3,4,5-trimethoxyphenyl)methyl)-2-methoxyphenol 24 as a potent antiproliferative compound with an IC50 value of 52 nM in MCF-7 breast cancer cells (ER+/PR+) and 74 nM in triple-negative MDA-MB-231 breast cancer cells. The compounds demonstrated significant G2/M phase cell cycle arrest and induction of apoptosis in the MCF-7 cell line, inhibited tubulin polymerisation, and were selective for cancer cells when evaluated in non-tumorigenic MCF-10A breast cells. The immunofluorescence staining of MCF-7 cells confirmed that the compounds targeted tubulin and induced multinucleation, which is a recognised sign of mitotic catastrophe. Computational docking studies of compounds 19e, 21l, and 24 in the colchicine binding site of tubulin indicated potential binding conformations for the compounds. Compounds 19e and 21l were also shown to selectively inhibit aromatase. These compounds are promising candidates for development as antiproliferative, aromatase inhibitory, and microtubule-disrupting agents for breast cancer.

10.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 8): 1187-1194, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32843997

RESUMEN

A series of related substituted 1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-ones have been characterized: 3-(4-fluoro-phen-yl)-4-(4-meth-oxy-phen-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-one, C25H24FNO5 (1), 3-(furan-2-yl)-4-(4-meth-oxy-phen-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-one, C23H23NO6 (2), 4-(4-meth-oxyphen-yl)-3-(naphthalen-1-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-one, C29H27NO5 (3), 3-(3,4-di-meth-oxy-phen-yl)-4-(4-meth-oxy-phen-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-one, C27H29NO7 (4) and 4,4-bis-(4-meth-oxy-phen-yl)-3-phenyl-1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-one, C32H31NO6 (5). All of the compounds are racemic. The lactam and 3,4,5-tri-meth-oxy-phenyl rings are approximately co-planar and the orientation of the lactam and the 4-meth-oxy-phenyl substituent is approximately orthogonal. The chiral centres, although eclipsed by geometry, have torsion angles ranging from -7.27 to 13.08° for the 3 position, and -8.69 to 13.76° for the 4 position of the ß-lactam. The structures display intra-molecular C-H⋯O bonding between the 3,4,5-tri-meth-oxy-phenyl ring and the lactam ketone. Further C-H⋯O inter-actions are observed and form either an opposing meth-oxy 'buckle' to join two mol-ecules together or a cyclic dimer.

11.
Bioorg Med Chem ; 28(5): 115261, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31987694

RESUMEN

4-Aryl-4H-Chromene derivatives have been previously shown to exhibit anti-proliferative, apoptotic and anti-angiogenic activity in a variety of tumor models in vitro and in vivo generally via activation of caspases through inhibition of tubulin polymerisation. We have previously identified by Virtual Screening (VS) a 4-aryl-4H-chromene scaffold, of which two examples were shown to bind Estrogen Receptor α and ß with low nanomolar affinity and <20-fold selectivity for α over ß and low micromolar anti-proliferative activity in the MCF-7 cell line. Thus, using the 4-aryl-4H-chromene scaffold as a starting point, a series of compounds with a range of basic arylethers at C-4 and modifications at the C3-ester substituent of the benzopyran ring were synthesised, producing some potent ER antagonists in the MCF-7 cell line which were highly selective for ERα (compound 35; 350-fold selectivity) or ERß (compound 42; 170-fold selectivity).


Asunto(s)
Antineoplásicos/farmacología , Benzopiranos/farmacología , Receptores de Estrógenos/antagonistas & inhibidores , Antineoplásicos/química , Benzopiranos/química , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Modelos Moleculares , Estructura Molecular
12.
Pharmaceuticals (Basel) ; 13(1)2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31963567

RESUMEN

Lymphomas (cancers of the lymphatic system) account for 12% of malignant diseases worldwide. Burkitt's lymphoma (BL) is a rare form of non-Hodgkin's lymphoma in which the cancer starts in the immune B-cells. We report the synthesis and preliminary studies on the antiproliferative activity of a library of 9,10-dihydro-9,10-ethanoanthracene based compounds structurally related to the antidepressant drug maprotiline against BL cell lines MUTU-1 and DG-75. Structural modifications were achieved by Diels-Alder reaction of the core 9-(2-nitrovinyl)anthracene with number of dienophiles including maleic anhydride, maleimides, acrylonitrile and benzyne. The antiproliferative activity of these compounds was evaluated in BL cell lines EBV- MUTU-1 and EBV+ DG-75 (chemoresistant). The most potent compounds 13j, 15, 16a, 16b, 16c, 16d and 19a displayed IC50 values in the range 0.17-0.38 µM against the BL cell line EBV- MUTU-1 and IC50 values in the range 0.45-0.78 µM against the chemoresistant BL cell line EBV+ DG-75. Compounds 15, 16b and 16c demonstrated potent ROS dependent apoptotic effects on the BL cell lines which were superior to the control drug taxol and showed minimal cytotoxicity to peripheral blood mononuclear cells (PBMCs). The results suggest that this class of compounds merits further investigation as antiproliferative agents for BL.

13.
Eur J Med Chem ; 189: 112050, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31954879

RESUMEN

A series of novel 1,4-diaryl-2-azetidinone analogues of combretastatin A-4 (CA-4) have been designed, synthesised and evaluated in vitro for antiproliferative activity, antiapoptotic activity and inhibition of tubulin polymerisation. Glucuronidation of CA-4 by uridine 5-diphosphoglucuronosyl transferase enzymes (UGTs) has been identified as a mechanism of resistance in cancer cells. Potential sites of ring B glucuronate conjugation are removed by replacing the B ring meta-hydroxy substituent of selected series of ß-lactams with alternative substituents e.g. F, Cl, Br, I, CH3. The 3-phenyl-ß-lactam 11 and 3-hydroxy-ß-lactam 46 demonstrate improved activity over CA-4 in CA-4 resistant HT-29 colon cancer cells (IC50 = 9 nM and 3 nM respectively compared with IC50 = 4.16 µM for CA-4), while retaining potency in MCF-7 breast cancer cells (IC50 = 17 nM and 22 nM respectively compared with IC50 = for 4 nM for CA-4). Compound 46 binds at the colchicine site of tubulin, and strongly inhibits tubulin assembly at micromolar concentrations comparable to CA-4. In addition, compound 46 induced mitotic arrest at low concentration in both cell lines MCF-7 and HT-29 together with downregulation of expression of antiapoptotic proteins Mcl-1, Bcl-2 and survivin in MCF-7 cells. These novel antiproliferative and antiapoptotic ß-lactams are potentially useful scaffolds in the development of tubulin-targeting agents for the treatment of breast cancers and chemoresistant colon cancers.


Asunto(s)
Antineoplásicos/farmacología , beta-Lactamas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células HEK293 , Humanos , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Necrosis/inducido químicamente , Unión Proteica , Estilbenos/química , Survivin/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacología , beta-Lactamas/síntesis química , beta-Lactamas/metabolismo
14.
Pharmaceuticals (Basel) ; 12(3)2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527393

RESUMEN

The focus of this Special Issue of Pharmaceuticals is on the design, synthesis, and molecular mechanism of action of novel antitumor, drugs with a special emphasis on the relationship between the chemical structure and the biological activity of the molecules. This Special Issue also provides an understanding of the biologic and genotypic context in which targets are selected for oncology drug discovery, thus providing a rationalization for the biological activity of these drugs and guiding the design of more effective agents. In this Special Issue of Pharmaceuticals dedicated to anticancer drugs, we present a selection of preclinical research papers including both traditional chemotherapeutic agents and newer more targeted therapies and biological agents. We have included articles that report the design of small molecules with promising anticancer activity as tubulin inhibitors, vascular targeting agents, and topoisomerase targeting agents, alongside a comprehensive review of clinically successful antibody-drug conjugates used in cancer treatment.

15.
Org Biomol Chem ; 17(25): 6184-6200, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31173031

RESUMEN

Microtubules are a validated clinical target for the treatment of many cancers. We describe the design, synthesis, biochemical evaluation, and molecular modelling studies of a series of analogues of the microtubule-destabilising agent, combretastatin A-4 (CA-4). Our series of 33 novel compounds contain the CA-4 core structure with modifications to the stilbene linking group, and are predominantly piperazine derivatives. Synthesis was achieved in a two-step process by firstly obtaining the acrylic acid via a Perkin reaction using microwave enhanced synthesis, followed by coupling using either DCC or Mukaiyama's reagent. All target compounds were screened for antiproliferative activity in MCF-7 breast cancer cells. Hydroxyl derivative (E)-3-(4-hydroxy-3-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl) propenone (4m) displayed potent antiproliferative activity (IC50 = 190 nM). Two amino-containing derivatives, (E)-3-(3-amino-4-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4q) and (E)-3-(3-amino-4-methoxyphenyl)-1-(4-(p-tolyl)piperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4x), were the most potent with IC50 values of 130 nM and 83 nM respectively. Representative compounds were shown to depolymerise tubulin, induce G2/M arrest and apoptosis in MCF-7 cells but not peripheral blood mononuclear cells, and induce cleavage of the DNA repair enzyme poly ADP ribose polymerase (PARP) in MCF-7 cells. Modelling studies predict that the compounds bind to tubulin within the colchicine-binding site. These compounds are a valuable addition to the library of CA-4 analogues and 4m, 4q and 4x will be developed further as novel, water-soluble molecules targeting microtubules.


Asunto(s)
Antineoplásicos/farmacología , Piperazinas/farmacología , Estilbenos/farmacología , Moduladores de Tubulina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Sitios de Unión , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Piperazinas/síntesis química , Piperazinas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Estilbenos/síntesis química , Estilbenos/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/metabolismo
16.
Pharmaceuticals (Basel) ; 12(2)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30979033

RESUMEN

Microtubule-targeted drugs are essential chemotherapeutic agents for various types of cancer. A series of 3-vinyl-ß-lactams (2-azetidinones) were designed, synthesized and evaluated as potential tubulin polymerization inhibitors, and for their antiproliferative effects in breast cancer cells. These compounds showed potent activity in MCF-7 breast cancer cells with an IC50 value of 8 nM for compound 7s 4-[3-Hydroxy-4-methoxyphenyl]-1-(3,4,5-trimethoxyphenyl)-3-vinylazetidin-2-one) which was comparable to the activity of Combretastatin A-4. Compound 7s had minimal cytotoxicity against both non-tumorigenic HEK-293T cells and murine mammary epithelial cells. The compounds inhibited the polymerisation of tubulin in vitro with an 8.7-fold reduction in tubulin polymerization at 10 M for compound 7s and were shown to interact at the colchicine-binding site on tubulin, resulting in significant G2/M phase cell cycle arrest. Immunofluorescence staining of MCF-7 cells confirmed that ß-lactam 7s is targeting tubulin and resulted in mitotic catastrophe. A docking simulation indicated potential binding conformations for the 3-vinyl-ß-lactam 7s in the colchicine domain of tubulin. These compounds are promising candidates for development as antiproiferative microtubule-disrupting agents.

17.
Invest New Drugs ; 36(4): 523-535, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29460212

RESUMEN

Purpose The combretastatins (CAs) are known to exhibit anti-tumour activity but the underlying mechanism remains to be fully elucidated. Inflammation plays a critical role in altering the function of cancer cells and evasion of cell death and increased proliferation are characteristics of transformed malignancies. Many of the proteins involved in these pathways are regulated by the transcription factor NF-κB which can be activated by tumour necrosis factor (TNF-α), a pro-inflammatory cytokine released by both malignant and immune cells within the tumour microenvironment. In this study, we examined the ability of combretastatin A-4 (CA-4) and its novel, cis-restricted analogue CA-432 to target the NF-κB signalling pathway in T cells. Methods Effects of the CAs on the viability of DND-41 leukaemia and Jurkat lymphoma T-cell lines was assessed by the alamar blue assay. Induction of apoptosis and effects on expression levels of key apoptotic proteins was established though flow cytometry and western blotting. Modulation of the NF-κB signalling pathway was determined through western blotting and through assessment of NF-κB reporter gene activity. Results CA-4 and CA-432 reduced cell viability and induced apoptosis in DND-41 and Jurkat T cells and sensitised the cells to TNF-α-induced apoptosis through inhibition of the NF-κB signalling pathway. Suppression of the NF-κB pathway downregulated NF-κB-dependent gene products involved in cell survival (IAPs, Bcl-2 and Mcl-1), proliferation (cyclin D1) and inflammation (COX-2). Furthermore, both CA-4 and CA-432 inhibited TNF-α-induced NF-κB activation through the inhibition of IκBα degradation and p65 nuclear translocation and decreased NF-κB reporter gene activity. Conclusions Our data indicate that the anti-cancer properties of comebretastatins may be mediated in part through targeting the NF-κB pathway. This study provides new insights into the molecular mechanisms of CA compounds and a potential application of combretastatins for inflammatory diseases such as cancers, which are associated with abnormal NF-κB activation.


Asunto(s)
Antineoplásicos/farmacología , Bibencilos/farmacología , FN-kappa B/metabolismo , Linfocitos T/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Células Jurkat , Transducción de Señal/efectos de los fármacos , Linfocitos T/metabolismo
18.
J Med Chem ; 61(2): 514-534, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28426931

RESUMEN

Estrogen receptor α (ERα) is an important target for the design of drugs such as tamoxifen (2a) and fulvestrant (5). Three series of ER-ligands based on the benzoxepin scaffold structure were synthesized: series I containing an acrylic acid, series II with an acrylamide, and series III with a saturated carboxylic acid substituent. These compounds were shown to be high affinity ligands for the ER with nanomolar IC50 binding values. Series I acrylic acid ligands were generally ERα selective. In particular, compound 13e featuring a phenylpenta-2,4-dienoic acid substituent was shown to be antiproliferative and downregulated ERα and ERß expression in MCF-7 breast cancer cells. Interestingly, from series III, the phenoxybutyric acid derivative compound 22 was not antiproliferative and selectively downregulated ERß. A docking study of the benzoxepin ligands was undertaken. Compound 13e is a promising lead for development as a clinically relevant SERD, while compound 22 will be a useful experimental probe for helping to elucidate the role of ERß in cancer cells.


Asunto(s)
Benzoxepinas/química , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/química , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Cristalografía por Rayos X , Receptor alfa de Estrógeno/química , Receptor beta de Estrógeno/química , Humanos , Ligandos , Células MCF-7 , Modelos Moleculares , Simulación del Acoplamiento Molecular , Proteolisis/efectos de los fármacos , Moduladores Selectivos de los Receptores de Estrógeno/síntesis química , Relación Estructura-Actividad
19.
Med Chem ; 14(2): 181-199, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-28969575

RESUMEN

BACKGROUND: Cancers of the lymphatic cells (lymphomas) account for approximately 12% of malignant diseases worldwide. The nitrostyrene scaffold is identified as a lead target structure for the development of particularly effective compounds targeting Burkitt's lymphoma (BL). OBJECTIVES: The aims of the curent study were to synthesise a panel of nitrostyrene compounds and to evaluate their activity in Burkitt's lymphoma (BL). METHODS: A panel of structurally varied compounds were designed and synthesised using Henry Knoevenagel condensation reactions. Single crystal X-Ray analysis confirmed the E configuration for six examples of these novel structures. A number of nitrostyrene-related compounds were also investigated including 1,3-bis(aryl)-2-nitropropenes together with heterocyclic scaffolds containing the nitrovinyl pharmacophore such as 3-nitro-2-phenyl-2H-chromenes. The antiproliferative activities of the compounds were evaluated using the BL cell lines EBV- MUTU-1 and EBV+ DG- 75 (chemoresistant) to establish preliminary structure-activity relationships. RESULTS: Lead compounds with optimized nitrostyrene scaffolds and 3-nitro-2-phenyl-2Hchromene structures were successfully established with typical IC50 values of 0.45 µM and 0.47 µM in MUTU-1 cells and 1.41 µM and 1.92 µM, respectively, in DG-75 cells. The mechanism of cell death was identified as apoptotic and the lead compound was found to elicit comparable apoptotic effects to Taxol in Burkitt's lymphoma cell lines MUTU-1 and DG-75. CONCLUSION: This class of pharmaceutically active compounds with potential for the treatment of Burkitt`s lymphoma suggest a potential role for nitrostyrene based agents in chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Linfoma de Burkitt/tratamiento farmacológico , Nitrocompuestos/farmacología , Estirenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Linfoma de Burkitt/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Nitrocompuestos/síntesis química , Nitrocompuestos/química , Relación Estructura-Actividad , Estirenos/síntesis química , Estirenos/química
20.
Molecules ; 22(9)2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28858267

RESUMEN

Nuclear receptors such as the estrogen receptors (ERα and ERß) modulate the effects of the estrogen hormones and are important targets for design of innovative chemotherapeutic agents for diseases such as breast cancer and osteoporosis. Conjugate and bifunctional compounds which incorporate an ER ligand offer a useful method of delivering cytotoxic drugs to tissue sites such as breast cancers which express ERs. A series of novel conjugate molecules incorporating both the ER ligands endoxifen and cyclofenil-endoxifen hybrids covalently linked to the antimitotic and tubulin targeting agent combretastatin A-4 were synthesised and evaluated as ER ligands. A number of these compounds demonstrated pro-apoptotic effects, with potent antiproliferative activity in ER-positive MCF-7 breast cancer cell lines and low cytotoxicity. These conjugates displayed binding affinity towards ERα and ERß isoforms at nanomolar concentrations e.g., the cyclofenil-amide compound 13e is a promising lead compound of a clinically relevant ER conjugate with IC50 in MCF-7 cells of 187 nM, and binding affinity to ERα (IC50 = 19 nM) and ERß (IC50 = 229 nM) while the endoxifen conjugate 16b demonstrates antiproliferative activity in MCF-7 cells (IC50 = 5.7 nM) and binding affinity to ERα (IC50 = 15 nM) and ERß (IC50 = 115 nM). The ER binding effects are rationalised in a molecular modelling study in which the disruption of the ER helix-12 in the presence of compounds 11e, 13e and 16b is presented These conjugate compounds have potential application for further development as antineoplastic agents in the treatment of ER positive breast cancers.


Asunto(s)
Antineoplásicos Fitogénicos/síntesis química , Bibencilos/síntesis química , Ciclofenil/análogos & derivados , Ciclofenil/síntesis química , Tamoxifeno/análogos & derivados , Antineoplásicos Fitogénicos/metabolismo , Antineoplásicos Fitogénicos/farmacología , Bibencilos/metabolismo , Bibencilos/farmacología , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Ciclofenil/metabolismo , Ciclofenil/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Leucocitos Mononucleares/efectos de los fármacos , Ligandos , Células MCF-7 , Modelos Moleculares , Conformación Molecular , Unión Proteica , Receptores de Estrógenos/metabolismo , Tamoxifeno/síntesis química , Tamoxifeno/metabolismo , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...