Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CrystEngComm ; 26(5): 673-680, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38293003

RESUMEN

We explore the role and nature of torsional flexibility of carboxylate-benzene links in the structural chemistry of metal-organic frameworks (MOFs) based on Zn and benzenedicarboxlyate (bdc) linkers. A particular motivation is to understand the extent to which such flexibility is important in stabilising the unusual topologically aperiodic phase known as TRUMOF-1. We compare the torsion angle distributions of TRUMOF-1 models with those for crystalline Zn/1,3-bdc MOFs, including a number of new materials whose structures we report here. We find that both periodic and aperiodic Zn/1,3-bdc MOFs sample a similar range of torsion angles, and hence the formation of TRUMOF-1 does not require any additional flexibility beyond that already evident in chemically-related crystalline phases. Comparison with Zn/1,4-bdc MOFs does show, however, that the lower symmetry of the 1,3-bdc linker allows access to a broader range of torsion angles, reflecting a greater flexibility of this linker.

2.
Science ; 379(6630): 357-361, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36701437

RESUMEN

When tiles decorated to lower their symmetry are joined together, they can form aperiodic and labyrinthine patterns. Such Truchet tilings offer an efficient mechanism of visual data storage related to that used in barcodes and QR codes. We show that the crystalline metal-organic framework [OZn4][1,3-benzenedicarboxylate]3 (TRUMOF-1) is an atomic-scale realization of a complex three-dimensional Truchet tiling. Its crystal structure consists of a periodically arranged assembly of identical zinc-containing clusters connected uniformly in a well-defined but disordered fashion to give a topologically aperiodic microporous network. We suggest that this unusual structure emerges as a consequence of geometric frustration in the chemical building units from which it is assembled.

3.
Mater Horiz ; 8(12): 3377-3386, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34665190

RESUMEN

The synthesis of phase pure metal-organic frameworks (MOFs) - network solids of metal clusters connected by organic linkers - is often complicated by the possibility of forming multiple diverse phases from one metal-ligand combination. For example, there are at least six Fe-terephthalate MOFs reported to date, with many examples in the literature of erroneous assignment of phase based on diffraction data alone. Herein, we show that modulated self-assembly can be used to influence the kinetics of self-assembly of Fe-terephthalate MOFs. We comprehensively assess the effect of addition of both coordinating modulators and pH modulators on the outcome of syntheses, as well as probing the influence of the oxidation state of the Fe precursor (oxidation modulation) and the role of the counteranion on the phase(s) formed. In doing so, we shed light on the thermodynamic landscape of this phase system, uncover mechanistics of modulation, provide robust routes to phase pure materials, often as single crystals, and introduce two new Fe-terephthalate MOFs to an already complex system. The results highlight the potential of modulated self-assembly to bring precision control and new structural diversity to systems that have already received significant study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...