Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
PeerJ ; 12: e17177, 2024.
Article En | MEDLINE | ID: mdl-38563005

Background: Plants have been pivotal in traditional and modern medicine globally, with historical evidence supporting their therapeutic applications. Nigella (Nigella sativa L.) is an annual herbaceous plant of the Ranunculaceae family and is cultivated in the Middle East, Eastern Europe, and Western and Central Asia. The medicinal use of plants dates back thousands of years, documented in ancient writings from various civilizations. Alkaloids, phenolics, saponins, flavonoids, terpenoids, anthraquinones, and tannins found in plants exhibit antioxidant, immunomodulatory, anti-inflammatory, anticancer, antibacterial, and antidiabetic activities. Methodology: This study specifically examines the pharmacological potential of Nigella sativa L., emphasizing thymoquinone-a compound with diverse nutraceutical benefits. The extraction, characterization, and quantification of thymoquinone, alongside other physicochemical parameters, were carried out using ethanol through Soxhlet extraction procedures on five nigella varieties. HPLC analysis was performed to determine the maximum accumulation of thymoquinone in the released variety of the plant and the chemical composition of the seed oil isolated from Nigella sativa L., varieties utilized in the study was determined through GC-MS analysis. Results: The research revealed that the Ajmer nigella-20 variety stands out, exhibiting elevated levels of thymoquinone (0.20 ± 0.07%), antioxidants (76.18 ± 1.78%), and substantial quantities of total phenols (31.85 ± 0.97 mg GAEg-1 seed) and flavonoids (8.150 ± 0.360 mg QE 100 g-1 seed) compared to other varieties. The GC-MS profiling showed the presence of 11 major compounds in the studied varieties, with p-cymene, longifolene, and myristic acid identified as the major chemical compounds present in the oil. Conclusion: The observed variations among Nigella varieties indicate the Ajmer nigella-20 variety as particularly promising for thymoquinone and bioactive compound extraction. This study underscores Nigella's potential as a source of pharmacologically active compounds, highlighting the need for further exploration in therapeutic applications.


Benzoquinones , Nigella sativa , Nigella , Nigella sativa/chemistry , Plant Extracts/pharmacology , Gas Chromatography-Mass Spectrometry , Flavonoids
2.
Sci Rep ; 12(1): 13134, 2022 07 30.
Article En | MEDLINE | ID: mdl-35908078

Dill seeds (Anethum graveolens L.) is the most valuable medicinal seed spice crop of Apiaceae. It bears small yellow flowers in the form of umbels. Being a cross-pollinated crop, floral visitors play vital role in pollination and seed sets. Hence, the present study was conducted at the ICAR-National Research Centre on Seed Spices, Ajmer (Rajasthan), India to discover the pollinator's community, foraging behaviour and abundance of most frequent pollinators and different modes of pollination on seed yield and quality of this seed spice crop. The insect visitors community of dill seeds was composed of 28 insect species belonging to 14 families of 6 orders. Most of floral visitors started their foraging activity at 8.00 h, reached peak activity between 12.00 and 14.00 h and their activity ceased at 18.00 h. Apis florea, A. dorsata, A. mellifera, solitary bee, Halictus sp. and two unidentified species of Hymenoptera; Episyrphus balteatus (DeGeer), Episyrphus sp., Eristalis sp and two other Musca species of Diptera were identified as potential and regular floral visitors of dill seeds. The highest seed yield of 1505.63 kg/ha was recorded in the treated plots provided with only 10% jaggery solution and was at par with the open pollination. A lower seed yield of 1432.5 kg/ha was recorded in plots pollinated only with A. mellifera inside insect cages. Open pollination with 10% jaggery solution spray increased the seed yield of dill seed crop by 57%, one-thousand seed test weight by 96% and the essential oil content by 27% over control plots. These results show that managed pollination is a much better way to enhance yields and quality of dill seed crop than other treatments including only honeybee-based pollination.


Anethum graveolens , Diptera , Oils, Volatile , Animals , Bees , Flowers , India , Insecta , Pollination , Seeds
4.
Appl Microbiol Biotechnol ; 106(3): 951-969, 2022 Feb.
Article En | MEDLINE | ID: mdl-35080667

Bountiful expression of bioactivity of phytochemicals obtained from spice crops like coriander gifts them the label of being natural antioxidants. It is well-accepted and time-tested towards contributing to human wellbeing. The accomplishment of coriander production is fundamentally influenced by genetic, agroclimatic, and agronomic factors. Despite the fact that there are very restricted options to manage the first two factors, the third one is apparently imperative to arbitrate as far as the elevated yield and enhanced quality are concerned. On the other hand, an indomitable, object-oriented, controlled agrotechnological and biotechnological intervention can also contribute towards better yield and quality of coriander. There are several accounts of the successful use of such technologies in order to genetically improve the qualitative and quantitative indicators of coriander. However, often these areas are not comprehensively explored and utilized. In that context, the present review highlights the botanical features, origin and distribution, multi-dimensional importance, pre- and post-harvest crop management, phytochemical production, and germplasm conservation, including the in vitro-based regeneration methods along with molecular marker-based biotechnological and omics approaches attempted in coriander until date. In addition, the possibility of the yet-to-be-explored agri-biotechnological methods and their potential for genetic improvement of this crop has also been reviewed in this appraisal. KEY POINTS: • Coriander, used both as an herb and spice, is popular in the pharmaceutical and culinary industries. • The current review provides insight into agrotechnological and biotechnological interventions for better yield and quality. • Provides novel ideas to harness the comprehensive qualitative and quantitative genetic improvement based on the potential use of promising biotechnological tools and techniques.


Coriandrum , Antioxidants , Biotechnology , Humans , Phytochemicals
...