Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Nat Commun ; 15(1): 3844, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714690

Multiple myeloma (MM) is a heterogeneous disease characterized by frequent MYC translocations. Sporadic MYC activation in the germinal center of genetically engineered Vk*MYC mice is sufficient to induce plasma cell tumors in which a variety of secondary mutations are spontaneously acquired and selected over time. Analysis of 119 Vk*MYC myeloma reveals recurrent copy number alterations, structural variations, chromothripsis, driver mutations, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) mutational activity, and a progressive decrease in immunoglobulin transcription that inversely correlates with proliferation. Moreover, we identify frequent insertional mutagenesis by endogenous retro-elements as a murine specific mechanism to activate NF-kB and IL6 signaling pathways shared with human MM. Despite the increased genomic complexity associated with progression, advanced tumors remain dependent on MYC. In summary, here we credential the Vk*MYC mouse as a unique resource to explore MM genomic evolution and describe a fully annotated collection of diverse and immortalized murine MM tumors.


Multiple Myeloma , Proto-Oncogene Proteins c-myc , Animals , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Humans , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Transformation, Neoplastic/genetics , Mutation , Signal Transduction/genetics , Mice, Transgenic , NF-kappa B/metabolism , NF-kappa B/genetics , Mutagenesis, Insertional , DNA Copy Number Variations/genetics , Genomics/methods , Translocation, Genetic
2.
Blood Cancer Discov ; 5(1): 34-55, 2024 01 08.
Article En | MEDLINE | ID: mdl-37767768

Multiple myeloma (MM) is a malignancy that is often driven by MYC and that is sustained by IRF4, which are upregulated by super-enhancers. IKZF1 and IKZF3 bind to super-enhancers and can be degraded using immunomodulatory imide drugs (IMiD). Successful IMiD responses downregulate MYC and IRF4; however, this fails in IMiD-resistant cells. MYC and IRF4 downregulation can also be achieved in IMiD-resistant tumors using inhibitors of BET and EP300 transcriptional coactivator proteins; however, in vivo these drugs have a narrow therapeutic window. By combining IMiDs with EP300 inhibition, we demonstrate greater downregulation of MYC and IRF4, synergistic killing of myeloma in vitro and in vivo, and an increased therapeutic window. Interestingly, this potent combination failed where MYC and IRF4 expression was maintained by high levels of the AP-1 factor BATF. Our results identify an effective drug combination and a previously unrecognized mechanism of IMiD resistance. SIGNIFICANCE: These results highlight the dependence of MM on IKZF1-bound super-enhancers, which can be effectively targeted by a potent therapeutic combination pairing IMiD-mediated degradation of IKZF1 and IKZF3 with EP300 inhibition. They also identify AP-1 factors as an unrecognized mechanism of IMiD resistance in MM. See related article by Neri, Barwick, et al., p. 56. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.


Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Lenalidomide/pharmacology , Lenalidomide/therapeutic use , Transcription Factor AP-1/therapeutic use , Drug Combinations , Immunomodulating Agents
3.
bioRxiv ; 2023 Jul 27.
Article En | MEDLINE | ID: mdl-37546905

Despite advancements in profiling multiple myeloma (MM) and its precursor conditions, there is limited information on mechanisms underlying disease progression. Clincal efforts designed to deconvolute such mechanisms are challenged by the long lead time between monoclonal gammopathy and its transformation to MM. MM mouse models represent an opportunity to overcome this temporal limitation. Here, we profile the genomic landscape of 118 genetically engineered Vk*MYC MM and reveal that it recapitulates the genomic heterogenenity and life history of human MM. We observed recurrent copy number alterations, structural variations, chromothripsis, driver mutations, APOBEC mutational activity, and a progressive decrease in immunoglobulin transcription that inversely correlates with proliferation. Moreover, we identified frequent insertional mutagenesis by endogenous retro-elements as a murine specific mechanism to activate NF-kB and IL6 signaling pathways shared with human MM. Despite the increased genomic complexity associated with progression, advanced tumors remain dependent on MYC expression, that drives the progression of monoclonal gammopathy to MM.

4.
J Clin Invest ; 133(4)2023 02 15.
Article En | MEDLINE | ID: mdl-36787254

Multiple myeloma is a hematologic malignancy of plasma cells that manifests with bone marrow tumors causing lytic bone lesions. Autologous stem cell transplantation (ASCT) after high-dose chemotherapy and followed by prolonged maintenance therapy with lenalidomide (LEN) is an effective standard-of-care therapy for multiple myeloma. However, most patients ultimately relapse. Rational combination strategies that address immune dysfunction may prolong the durability of ASCT. In this issue of the JCI, Minnie and colleagues investigated the addition of a checkpoint inhibitor to LEN maintenance therapy after ASCT. They found that the immune checkpoint TIGIT was an optimal target in patient samples. In a syngeneic, immunocompetent multiple myeloma mouse model, blockade of TIGIT synergized with LEN maintenance by inducing immune protection, characterized in part by the expansion of polyfunctional T cells in the bone marrow. The treatment enhanced durable antimyeloma efficacy and has translatable implications.


Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Animals , Mice , Antineoplastic Combined Chemotherapy Protocols , Lenalidomide/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Neoplasm Recurrence, Local/drug therapy , Stem Cell Transplantation , Thalidomide , Transplantation, Autologous
5.
Commun Biol ; 5(1): 942, 2022 09 09.
Article En | MEDLINE | ID: mdl-36085311

Mucosal-associated Invariant T (MAIT) cells are an innate-like T cell subset that recognize a broad array of microbial pathogens, including respiratory pathogens. Here we investigate the transcriptional profile of MAIT cells localized to the human lung, and postulate that MAIT cells may play a role in maintaining homeostasis at this mucosal barrier. Using the MR1/5-OP-RU tetramer, we identified MAIT cells and non-MAIT CD8+ T cells in lung tissue not suitable for transplant from human donors. We used RNA-sequencing of MAIT cells compared to non-MAIT CD8+ T cells to define the transcriptome of MAIT cells in the human lung. We show that, as a population, lung MAIT cells are polycytotoxic, secrete the directly antimicrobial molecule IL-26, express genes associated with persistence, and selectively express cytokine and chemokine- related molecules distinct from other lung-resident CD8+ T cells, such as interferon-γ- and IL-12- receptors. These data highlight MAIT cells' predisposition to rapid pro-inflammatory cytokine responsiveness and antimicrobial mechanisms in human lung tissue, concordant with findings of blood-derived counterparts, and support a function for MAIT cells as early sensors in the defense of respiratory barrier function.


Anti-Infective Agents , Mucosal-Associated Invariant T Cells , Anti-Bacterial Agents , CD8-Positive T-Lymphocytes , Cytokines , Humans , Lung
6.
Blood Cancer Discov ; 2(4): 354-369, 2021 07.
Article En | MEDLINE | ID: mdl-34258584

BCMA-CD3-targeting bispecific antibodies (BsAb) are a recently developed immunotherapy class which shows potent tumor killing activity in multiple myeloma (MM). Here, we investigated a murine BCMA-CD3-targeting BsAb in the immunocompetent Vk*MYC and its IMiD-sensitive derivative Vk*MYChCRBN models of MM. The BCMA-CD3 BsAb was safe and efficacious in a subset of mice, but failed in those with high-tumor burden, consistent with clinical reports of BsAb in leukemia. The combination of BCMA-CD3 BsAb with pomalidomide expanded lytic T cells and improved activity even in IMiD resistant high-tumor burden cases. Yet, survival was only marginally extended due to acute toxicity and T cell exhaustion, which impaired T cell persistence. In contrast, the combination with cyclophosphamide was safe and allowed for a tempered pro-inflammatory response associated with long-lasting complete remission. Concurrent cytotoxic therapy with BsAb actually improved T cell persistence and function, offering a promising approach to patients with a large tumor burden.


Antibodies, Bispecific , Multiple Myeloma , Animals , Antibodies, Bispecific/pharmacology , Humans , Immunotherapy , Mice , Multiple Myeloma/drug therapy , T-Lymphocytes , Tumor Burden
7.
Front Immunol ; 12: 631410, 2021.
Article En | MEDLINE | ID: mdl-33897687

Mucosal associated invariant T (MAIT) cells are a class of innate-like T cells that utilize a semi-invariant αß T cell receptor to recognize small molecule ligands produced by bacteria and fungi. Despite growing evidence that immune cells at mucosal surfaces are often phenotypically and functionally distinct from those in the peripheral circulation, knowledge about the characteristics of MAIT cells at the lung mucosal surface, the site of exposure to respiratory pathogens, is limited. HIV infection has been shown to have a profound effect on the number and function of MAIT cells in the peripheral blood, but its effect on lung mucosal MAIT cells is unknown. We examined the phenotypic, functional, and transcriptomic features of major histocompatibility complex (MHC) class I-related (MR1)-restricted MAIT cells from the peripheral blood and bronchoalveolar compartments of otherwise healthy individuals with latent Mycobacterium tuberculosis (Mtb) infection who were either HIV uninfected or HIV infected. Peripheral blood MAIT cells consistently co-expressed typical MAIT cell surface markers CD161 and CD26 in HIV-negative individuals, while paired bronchoalveolar MAIT cells displayed heterogenous expression of these markers. Bronchoalveolar MAIT cells produced lower levels of pro-inflammatory cytokine IFN-γ and expressed higher levels of co-inhibitory markers PD-1 and TIM-3 than peripheral MAIT cells. HIV infection resulted in decreased frequencies and pro-inflammatory function of peripheral blood MAIT cells, while in the bronchoalveolar compartment MAIT cell frequency was decreased but phenotype and function were not significantly altered. Single-cell transcriptomic analysis demonstrated greater heterogeneity among bronchoalveolar compared to peripheral blood MAIT cells and suggested a distinct subset in the bronchoalveolar compartment. The transcriptional features of this bronchoalveolar subset were associated with MAIT cell tissue repair functions. In summary, we found previously undescribed phenotypic and transcriptional heterogeneity of bronchoalveolar MAIT cells in HIV-negative people. In HIV infection, we found numeric depletion of MAIT cells in both anatomical compartments but preservation of the novel phenotypic and transcriptional features of bronchoalveolar MAIT cells.


Gene Expression Profiling , HIV Infections/immunology , Histocompatibility Antigens Class I/immunology , Lung/cytology , Minor Histocompatibility Antigens/immunology , Mucosal-Associated Invariant T Cells/immunology , Respiratory Mucosa/cytology , Respiratory Mucosa/immunology , Adult , Female , HIV Infections/microbiology , Humans , Immunity, Mucosal , Latent Tuberculosis/immunology , Lung/immunology , Lung/virology , Male , Middle Aged , Mucosal-Associated Invariant T Cells/classification , Mucous Membrane/cytology , Mucous Membrane/immunology , Phenotype , Transcriptome , Young Adult
8.
Blood Cancer Discov ; 1(1): 68-81, 2020 07.
Article En | MEDLINE | ID: mdl-32954360

The most common genetic abnormality in multiple myeloma (MM) is the deletion of chromosome 13, seen in almost half of newly diagnosed patients. Unlike chronic lymphocytic leukemia, where a recurrent minimally deleted region including MIR15A/MIR16-1 has been mapped, the deletions in MM predominantly involve the entire chromosome and no specific driver gene has been identified. Additional candidate loci include RB1 and DIS3, but while biallelic deletion of RB1 is associated with disease progression, DIS3 is a common essential gene and complete inactivation is not observed. The Vk*MYC transgenic mouse model of MM spontaneously acquires del(14), syntenic to human chromosome 13, and Rb1 complete inactivation, but not Dis3 mutations. Taking advantage of this model, we explored the role in MM initiation and progression of two candidate loci on chromosome 13: RB1 and MIR15A/MIR16-1. Monoallelic deletion of Mir15a/Mir16-1 but not Rb1 was sufficient to accelerate the development of monoclonal gammopathy in wildtype mice, and the progression of MM in Vk*MYC mice, resulting in increased expression of Mir15a/Mir16-1 target genes and plasma cell proliferation, which was similarly observed in patients with MM.


Leukemia, Lymphocytic, Chronic, B-Cell , MicroRNAs , Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Animals , Cell Proliferation/genetics , Disease Progression , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mice , MicroRNAs/genetics , Monoclonal Gammopathy of Undetermined Significance/genetics , Multiple Myeloma/genetics , Multiple Myeloma/pathology
9.
Sci Rep ; 10(1): 15429, 2020 09 22.
Article En | MEDLINE | ID: mdl-32963314

Mucosal Associated Invariant T (MAIT) cells can sense intracellular infection by a broad array of pathogens. These cells are activated upon encountering microbial antigen(s) displayed by MR1 on the surface of an infected cell. Human MR1 undergoes alternative splicing. The full-length isoform, MR1A, can activate MAIT cells, while the function of the isoforms, MR1B and MR1C, are incompletely understood. In this report, we sought to characterize the expression and function of these splice variants. Using a transcriptomic analysis in conjunction with qPCR, we find that that MR1A and MR1B transcripts are widely expressed. However only MR1A can present mycobacterial antigen to MAIT cells. Coexpression of MR1B with MR1A decreases MAIT cell activation following bacterial infection. Additionally, expression of MR1B prior to MR1A lowers total MR1A abundance, suggesting competition between MR1A and MR1B for either ligands or chaperones required for folding and/or trafficking. Finally, we evaluated CD4/CD8 double positive thymocytes expressing surface MR1. Here, we find that relative expression of MR1A/MR1B transcript is associated with the prevalence of MR1 + CD4/CD8 cells in the thymus. Our results suggest alternative splicing of MR1 represents a means of regulating MAIT activation in response to microbial ligand(s).


Alternative Splicing/genetics , Alternative Splicing/immunology , Antigen Presentation/genetics , Antigen Presentation/immunology , Histocompatibility Antigens Class I/genetics , Minor Histocompatibility Antigens/genetics , Mucosal-Associated Invariant T Cells/immunology , A549 Cells , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cell Line, Tumor , HEK293 Cells , Histocompatibility Antigens Class I/immunology , Humans , Ligands , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Minor Histocompatibility Antigens/immunology , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Transport/genetics , Protein Transport/immunology , Thymocytes/immunology , Transcriptome/genetics , Transcriptome/immunology
10.
J Biol Chem ; 295(42): 14445-14457, 2020 10 16.
Article En | MEDLINE | ID: mdl-32817339

MR1 presents vitamin B-related metabolites to mucosal associated invariant T (MAIT) cells, which are characterized, in part, by the TRAV1-2+ αß T cell receptor (TCR). In addition, a more diverse TRAV1-2- MR1-restricted T cell repertoire exists that can possess altered specificity for MR1 antigens. However, the molecular basis of how such TRAV1-2- TCRs interact with MR1-antigen complexes remains unclear. Here, we describe how a TRAV12-2+ TCR (termed D462-E4) recognizes an MR1-antigen complex. We report the crystal structures of the unliganded D462-E4 TCR and its complex with MR1 presenting the riboflavin-based antigen 5-OP-RU. Here, the TRBV29-1 ß-chain of the D462-E4 TCR binds over the F'-pocket of MR1, whereby the complementarity-determining region (CDR) 3ß loop surrounded and projected into the F'-pocket. Nevertheless, the CDR3ß loop anchored proximal to the MR1 A'-pocket and mediated direct contact with the 5-OP-RU antigen. The D462-E4 TCR footprint on MR1 contrasted that of the TRAV1-2+ and TRAV36+ TCRs' docking topologies on MR1. Accordingly, diverse MR1-restricted T cell repertoire reveals differential docking modalities on MR1, thus providing greater scope for differing antigen specificities.


Histocompatibility Antigens Class I/metabolism , Minor Histocompatibility Antigens/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Amino Acid Sequence , Antigen Presentation , Binding Sites , Crystallography, X-Ray , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Humans , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/genetics , Molecular Docking Simulation , Protein Refolding , Protein Structure, Tertiary , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Ribitol/analogs & derivatives , Ribitol/chemistry , Ribitol/metabolism , Surface Plasmon Resonance , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Uracil/analogs & derivatives , Uracil/chemistry , Uracil/metabolism
11.
Immunol Cell Biol ; 98(9): 770-781, 2020 10.
Article En | MEDLINE | ID: mdl-32568415

Mucosal-associated invariant T (MAIT) cells are key players in the immune response against microbial infection. The MAIT T-cell receptor (TCR) recognizes a diverse array of microbial ligands, and recent reports have highlighted the variability in the MAIT TCR that could further contribute to discrimination of ligand. The MAIT TCR complementarity determining region (CDR)3ß sequence displays a high level of diversity across individuals, and clonotype usage appears to be dependent on antigenic exposure. To address the relationship between the MAIT TCR and microbial ligand, we utilized a previously defined panel of MAIT cell clones that demonstrated variability in responses against different microbial infections. Sequencing of these clones revealed four pairs, each with shared (identical) CDR3α and different CDR3ß sequences. These pairs demonstrated varied responses against microbially infected dendritic cells as well as against 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil, a ligand abundant in Salmonella enterica serovar Typhimurium, suggesting that the CDR3ß contributes to differences in ligand discrimination. Taken together, these results highlight a key role for the MAIT CDR3ß region in distinguishing between MR1-bound antigens and ligands.


Bacterial Infections/immunology , Complementarity Determining Regions/genetics , Genes, T-Cell Receptor beta , Lymphocyte Activation , Mucosal-Associated Invariant T Cells , Humans , Ligands , Mucosal-Associated Invariant T Cells/immunology , Ribitol/analogs & derivatives , Uracil/analogs & derivatives
12.
Haematologica ; 105(6): 1641-1649, 2020 06.
Article En | MEDLINE | ID: mdl-31582538

The cellular cytotoxicity of APY0201, a PIKfyve inhibitor, against multiple myeloma was initially identified in an unbiased in vitro chemical library screen. The activity of APY0201 was confirmed in all 25 cell lines tested and in 40% of 100 ex vivo patient-derived primary samples, with increased activity in primary samples harboring trisomies and lacking t(11;14). The broad anti-multiple myeloma activity of PIKfyve inhibitors was further demonstrated in confirmatory screens and showed the superior potency of APY0201 when compared to the PIKfyve inhibitors YM201636 and apilimod, with a mid-point half maximal effective concentration (EC50) at nanomolar concentrations in, respectively, 65%, 40%, and 5% of the tested cell lines. Upregulation of genes in the lysosomal pathway and increased cellular vacuolization were observed in vitro following APY0201 treatment, although these cellular effects did not correlate well with responsiveness. We confirm that PIKfyve inhibition is associated with activation of the transcription factor EB, a master regulator of lysosomal biogenesis and autophagy. Furthermore, we established an assay measuring autophagy as a predictive marker of APY0201 sensitivity. Overall, these findings indicate promising activity of PIKfyve inhibitors secondary to disruption of autophagy in multiple myeloma and suggest a strategy to enrich for likely responders.


Multiple Myeloma , Autophagy , Humans , Lysosomes , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors
13.
J Immunol ; 203(11): 2917-2927, 2019 12 01.
Article En | MEDLINE | ID: mdl-31611259

Tuberculosis (TB) is the leading cause of mortality from a single infectious agent, Mycobacterium tuberculosis Relevant immune targets of the partially efficacious TB vaccine bacille Calmette-Guérin (BCG) remain poorly defined. Mucosal-associated invariant T (MAIT) cells are MHC-related protein 1 (MR1)-restricted T cells, which are reactive against M. tuberculosis, and underexplored as potential TB vaccine targets. We sought to determine whether BCG vaccination activated mycobacteria-specific MAIT cell responses in humans. We analyzed whole blood samples from M. tuberculosis-infected South African adults who were revaccinated with BCG after a six-month course of isoniazid preventative therapy. In vitro BCG stimulation potently induced IFN-γ expression by phenotypic (CD8+CD26+CD161+) MAIT cells, which constituted the majority (75%) of BCG-reactive IFN-γ-producing CD8+ T cells. BCG revaccination transiently expanded peripheral blood frequencies of BCG-reactive IFN-γ+ MAIT cells, which returned to baseline frequencies a year following vaccination. In another cohort of healthy adults who received BCG at birth, 53% of mycobacteria-reactive-activated CD8 T cells expressed CDR3α TCRs, previously reported as MAIT TCRs, expressing the canonical TRAV1-2-TRAJ33 MAIT TCRα rearrangement. CD26 and CD161 coexpression correlated with TRAV1-2+CD161+ phenotype more accurately in CD8+ than CD4-CD8- MAIT cells. Interestingly, BCG-induced IFN-γ expression by MAIT cells in vitro was mediated by the innate cytokines IL-12 and IL-18 more than MR1-induced TCR signaling, suggesting TCR-independent activation. Collectively, the data suggest that activation of blood MAIT cells by innate inflammatory cytokines is a major mechanism of responsiveness to vaccination with whole cell vaccines against TB or in vitro stimulation with mycobacteria (Clinical trial registration: NCT01119521).


Histocompatibility Antigens Class I/immunology , Minor Histocompatibility Antigens/immunology , Mucosal-Associated Invariant T Cells/immunology , Mycobacterium tuberculosis/immunology , Adolescent , Child , Cohort Studies , Cytokines/immunology , Humans , Receptors, Antigen, T-Cell/immunology
14.
Commun Biol ; 2: 203, 2019.
Article En | MEDLINE | ID: mdl-31231693

Mucosal-associated invariant T (MAIT) cells typically express a TRAV1-2+ semi-invariant TCRα that enables recognition of bacterial, mycobacterial, and fungal riboflavin metabolites presented by MR1. MAIT cells are associated with immune control of bacterial and mycobacterial infections in murine models. Here, we report that a population of pro-inflammatory TRAV1-2+ CD8+ T cells are present in the airways and lungs of healthy individuals and are enriched in bronchoalveolar fluid of patients with active pulmonary tuberculosis (TB). High-throughput T cell receptor analysis reveals oligoclonal expansions of canonical and donor-unique TRAV1-2+ MAIT-consistent TCRα sequences within this population. Some of these cells demonstrate MR1-restricted mycobacterial reactivity and phenotypes suggestive of MAIT cell identity. These findings demonstrate enrichment of TRAV1-2+ CD8+ T cells with MAIT or MAIT-like features in the airways during active TB and suggest a role for these cells in the human pulmonary immune response to Mycobacterium tuberculosis.


CD8-Positive T-Lymphocytes/cytology , Mucosal-Associated Invariant T Cells/immunology , Tuberculosis, Pulmonary/immunology , Animals , Bronchi/microbiology , Bronchoalveolar Lavage Fluid , Bronchoscopy , CD8-Positive T-Lymphocytes/microbiology , Histocompatibility Antigens Class I/immunology , Humans , Immune System , Inflammation , Intestines/immunology , Lung/immunology , Lung/microbiology , Mice , Minor Histocompatibility Antigens/immunology , Mucosal-Associated Invariant T Cells/microbiology , Mycobacterium tuberculosis/immunology , Oregon , Phenotype , Receptors, Antigen, T-Cell, alpha-beta/metabolism , South Africa , Tuberculosis, Pulmonary/microbiology
15.
Semin Respir Crit Care Med ; 39(3): 286-296, 2018 Jun.
Article En | MEDLINE | ID: mdl-30071544

For the ICU physician, the failure to consider, diagnose, and treat tuberculosis (TB) results in increased morbidity and mortality, and poses risks to both patients and health care providers. At present, the diagnosis of TB depends on the detection of either mycobacteria or mycobacterial products from clinical specimens. Given the risks posed to both the patient and health care providers by undiagnosed and/or untreated TB, the ability to diagnose TB rapidly in the ICU cannot be understated. In this regard, nucleic acid amplification tests provide relatively quick information about the presence of Mycobacterium tuberculosis (Mtb) DNA. If available, a blood-based test that would accurately identify persons with TB would be of use in the ICU. Currently available tests such as the T-Spot.TB or QuantiFERON-TB Gold In-Tube can discern infection with Mtb, but are not recommended for the ICU as they cannot rule out TB. In this review, we will discuss the increasing literature that would suggest that a blood-based diagnostic that reflects the host response to TB could be used to diagnose TB in the ICU.


Mycobacterium tuberculosis/genetics , Tuberculosis/diagnosis , Humans , Intensive Care Units , Mycobacterium tuberculosis/isolation & purification , Nucleic Acid Amplification Techniques , Positron Emission Tomography Computed Tomography , Radiography, Thoracic , Tuberculin Test
16.
Sci Immunol ; 3(25)2018 07 13.
Article En | MEDLINE | ID: mdl-30006464

MR1-restricted T cells (MR1Ts) are a T cell subset that recognize and mediate host defense to a broad array of microbial pathogens, including respiratory pathogens (e.g., Mycobacterium tuberculosis, Streptococcus pyogenes, and Francisella tularensis) and enteric pathogens (e.g., Escherichia coli and Salmonella species). Mucosal-associated invariant T (MAIT) cells, a subset of MR1Ts, were historically defined by the use of a semi-invariant T cell receptor (TCR) and recognition of small molecules derived from the riboflavin biosynthesis pathway presented on MR1. We used mass spectrometry to identify the repertoire of ligands presented by MR1 from the microbes E. coli and Mycobacterium smegmatis We found that the MR1 ligandome is unexpectedly broad, revealing functionally distinct ligands derived from E. coli and M. smegmatis The identification, synthesis, and functional analysis of mycobacterial ligands reveal that MR1T ligands can be distinguished by MR1Ts with diverse TCR usage. These data demonstrate that MR1 can serve as an immune sensor of the microbial ligandome.


Escherichia coli/metabolism , Histocompatibility Antigens Class I/metabolism , Metabolome , Minor Histocompatibility Antigens/metabolism , Mucosal-Associated Invariant T Cells/metabolism , Mycobacterium smegmatis/metabolism , Receptors, Antigen, T-Cell/metabolism , Cell Line , Humans , Ligands
17.
F1000Res ; 72018.
Article En | MEDLINE | ID: mdl-29904578

The elimination of tuberculosis (TB) cannot reasonably be achieved by treatment of individual cases and will require an improved vaccine or immunotherapy. A challenge in developing an improved TB vaccine has been the lack of understanding what is needed to generate sterilizing immunity against Mycobacterium tuberculosis (Mtb) infection. Several epidemiological observations support the hypothesis that humans can eradicate Mtb following exposure. This has been termed early clearance and is defined as elimination of Mtb infection prior to the development of an adaptive immune response, as measured by a tuberculin skin test or interferon-gamma release assay. Here, we examine research into the likelihood of and possible mechanisms responsible for early clearance in household contacts of patients with active TB. We explore both innate and adaptive immune responses in the lung. Enhanced understanding of these mechanisms could be harnessed for the development of a preventative vaccine or immunotherapy.

18.
Immunol Cell Biol ; 96(6): 607-617, 2018 07.
Article En | MEDLINE | ID: mdl-29451704

Mucosal-associated invariant T (MAIT) cells, the most abundant T-cell subset in humans, are increasingly being recognized for their importance in microbial immunity. MAIT cells accumulate in almost every mucosal tissue examined, including the lung, liver and intestinal tract, where they can be activated through T-cell receptor (TCR) triggering as well as cytokine stimulation in response to a host of microbial products. In this review, we specifically discuss MAIT cell responses to bacterial and fungal infections, with a focus on responses that are both MR1-dependent and -independent, the evidence for diversity in MAIT TCR usage in response to discrete microbial products, protective immunity induced by MAIT cells, and MAIT cell antimicrobial functions in the context of these infections.


Bacterial Infections/immunology , Immunity, Mucosal/immunology , Mucosal-Associated Invariant T Cells/immunology , Mycoses/immunology , Animals , Humans
19.
Nat Commun ; 7: 12506, 2016 08 16.
Article En | MEDLINE | ID: mdl-27527800

Mucosal-associated invariant T (MAIT) cells are thought to detect microbial antigens presented by the HLA-Ib molecule MR1 through the exclusive use of a TRAV1-2-containing TCRα. Here we use MR1 tetramer staining and ex vivo analysis with mycobacteria-infected MR1-deficient cells to demonstrate the presence of functional human MR1-restricted T cells that lack TRAV1-2. We characterize an MR1-restricted clone that expresses the TRAV12-2 TCRα, which lacks residues previously shown to be critical for MR1-antigen recognition. In contrast to TRAV1-2(+) MAIT cells, this TRAV12-2-expressing clone displays a distinct pattern of microbial recognition by detecting infection with the riboflavin auxotroph Streptococcus pyogenes. As known MAIT antigens are derived from riboflavin metabolites, this suggests that TRAV12-2(+) clone recognizes unique antigens. Thus, MR1-restricted T cells can discriminate between microbes in a TCR-dependent manner. We postulate that additional MR1-restricted T-cell subsets may play a unique role in defence against infection by broadening the recognition of microbial metabolites.


Antigens/immunology , Histocompatibility Antigens Class I/immunology , Minor Histocompatibility Antigens/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Riboflavin/immunology , Streptococcus pyogenes/immunology , T-Lymphocyte Subsets/immunology , A549 Cells , Antigen Presentation/immunology , Cell Line , Cells, Cultured , Histocompatibility Antigens Class I/metabolism , Host-Pathogen Interactions/immunology , Humans , Minor Histocompatibility Antigens/metabolism , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Riboflavin/metabolism , Streptococcal Infections/diagnosis , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcus pyogenes/physiology , T-Lymphocyte Subsets/metabolism
20.
J Immunol ; 197(3): 971-82, 2016 08 01.
Article En | MEDLINE | ID: mdl-27307560

The nonclassical HLA molecule MHC-related protein 1 (MR1) presents metabolites of the vitamin B synthesis pathways to mucosal-associated invariant T (MAIT) cells and other MR1-restricted T cells. This new class of Ags represents a variation on the classical paradigm of self/non-self discrimination because these T cells are activated through their TCR by small organic compounds generated during microbial vitamin B2 synthesis. Beyond the fundamental significance, the invariant nature of MR1 across the human population is a tantalizing feature for the potential development of universal immune therapeutic and diagnostic tools. However, many aspects of MR1 Ag presentation and MR1-restricted T cell biology remain unknown, and the ubiquitous expression of MR1 across tissues and cell lines can be a confounding factor for experimental purposes. In this study, we report the development of a novel CRISPR/Cas9 genome editing lentiviral system and its use to efficiently disrupt MR1 expression in A459, THP-1, and K562 cell lines. We generated isogenic MR1(-/-) clonal derivatives of the A549 lung carcinoma and THP-1 monocytic cell lines and used these to study T cell responses to intracellular pathogens. We confirmed that MAIT cell clones were unable to respond to MR1(-/-) clones infected with bacteria whereas Ag presentation by classical and other nonclassical HLAs was unaffected. This system represents a robust and efficient method to disrupt the expression of MR1 and should facilitate investigations into the processing and presentation of MR1 Ags as well as into the biology of MAIT cells.


Antigen Presentation/immunology , Gene Editing/methods , Histocompatibility Antigens Class I/immunology , Lymphocyte Activation/immunology , Minor Histocompatibility Antigens/immunology , T-Lymphocytes/immunology , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Flow Cytometry , Genetic Vectors , Humans , Lentivirus , Mutagenesis, Site-Directed , Polymerase Chain Reaction , T-Lymphocyte Subsets/immunology
...