Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Hemasphere ; 7(8): e927, 2023 Aug.
Article En | MEDLINE | ID: mdl-37449197

Epigenetic regulation occurs on the level of compacting DNA into chromatin. The functional unit of chromatin is the nucleosome, which consists of DNA wrapped around a core of histone proteins. While canonical histone proteins are incorporated into chromatin through a replication-coupled process, structural variants of histones, commonly named histone variants, are deposited into chromatin in a replication-independent manner. Specific chaperones and chromatin remodelers mediate the locus-specific deposition of histone variants. Although histone variants comprise one of the least understood layers of epigenetic regulation, it has been proposed that they play an essential role in directly regulating gene expression in health and disease. Here, we review the emerging evidence suggesting that histone variants have a role at different stages of hematopoiesis, with a particular focus on the histone variants H2A, H3, and H1. Moreover, we discuss the current knowledge on how the dysregulation of histone variants can contribute to hematopoietic malignancies.

2.
EMBO Rep ; 24(2): e54977, 2023 02 06.
Article En | MEDLINE | ID: mdl-36416237

High-risk neuroblastoma patients have poor survival rates and require better therapeutic options. High expression of a multifunctional DNA and RNA-binding protein, NONO, in neuroblastoma is associated with poor patient outcome; however, there is little understanding of the mechanism of NONO-dependent oncogenic gene regulatory activity in neuroblastoma. Here, we used cell imaging, biochemical and genome-wide molecular analysis to reveal complex NONO-dependent regulation of gene expression. NONO forms RNA- and DNA-tethered condensates throughout the nucleus and undergoes phase separation in vitro, modulated by nucleic acid binding. CLIP analyses show that NONO mainly binds to the 5' end of pre-mRNAs and modulates pre-mRNA processing, dependent on its RNA-binding activity. NONO regulates super-enhancer-associated genes, including HAND2 and GATA2. Abrogating NONO RNA binding, or phase separation activity, results in decreased expression of HAND2 and GATA2. Thus, future development of agents that target RNA-binding activity of NONO may have therapeutic potential in this cancer context.


Basic Helix-Loop-Helix Transcription Factors , DNA-Binding Proteins , Neuroblastoma , Humans , DNA/metabolism , DNA-Binding Proteins/genetics , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Neuroblastoma/genetics , Neuroblastoma/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
3.
Cell Rep ; 39(12): 110988, 2022 06 21.
Article En | MEDLINE | ID: mdl-35732123

MacroH2A histone variants have a function in gene regulation that is poorly understood at the molecular level. We report that macroH2A1.2 and macroH2A2 modulate the transcriptional ground state of cancer cells and how they respond to inflammatory cytokines. Removal of macroH2A1.2 and macroH2A2 in hepatoblastoma cells affects the contact frequency of promoters and distal enhancers coinciding with changes in enhancer activity or preceding them in response to the cytokine tumor necrosis factor alpha. Although macroH2As regulate genes in both directions, they globally facilitate the nuclear factor κB (NF-κB)-mediated response. In contrast, macroH2As suppress the response to the pro-inflammatory cytokine interferon gamma. MacroH2A2 has a stronger contribution to gene repression than macroH2A1.2. Taken together, our results suggest that macroH2As have a role in regulating the response of cancer cells to inflammatory signals on the level of chromatin structure. This is likely relevant for the interaction of cancer cells with immune cells of their microenvironment.


Cytokines , Gene Expression Regulation , NF-kappa B , Promoter Regions, Genetic/genetics
4.
Cancers (Basel) ; 13(12)2021 Jun 15.
Article En | MEDLINE | ID: mdl-34203934

The epigenome regulates gene expression and provides a molecular memory of cellular events. A growing body of evidence has highlighted the importance of epigenetic regulation in physiological tissue homeostasis and malignant transformation. Among epigenetic mechanisms, the replacement of replication-coupled histones with histone variants is the least understood. Due to differences in protein sequence and genomic distribution, histone variants contribute to the plasticity of the epigenome. Here, we focus on the family of macroH2A histone variants that are particular in having a tripartite structure consisting of a histone fold, an intrinsically disordered linker and a globular macrodomain. We discuss how these domains mediate different molecular functions related to chromatin architecture, transcription and DNA repair. Dysregulated expression of macroH2A histone variants has been observed in different subtypes of cancer and has variable prognostic impact, depending on cellular context and molecular background. We aim to provide a concise review regarding the context- and isoform-dependent contributions of macroH2A histone variants to cancer development and progression.

...