Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Psychopharmacology (Berl) ; 231(12): 2483-92, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24429871

RESUMEN

RATIONALE: Increasing evidence points to the prelimbic (PL) and infralimbic (IL) cortices of the medial prefrontal cortex (mPFC) and their dopaminergic innervations subserving opposing roles in the regulation of instrumental behavior. However, it is at present unclear if they hold similar roles in the regulation of Pavlovian learning. OBJECTIVE: The present study investigated the role of the dopaminergic innervations of the PL and IL in the modulation of Pavlovian appetitive cue and place conditioning, previously shown to be dependent on the basolateral amygdala and hippocampus, respectively. METHODS: Rats received preconditioning microinfusions of D-amphetamine, cis-flupenthixol, or vehicle solution directly into the PL or IL and were trained to simultaneously acquire conditioned cue and place preference in a radial maze. RESULTS: Preconditioning blockade of dopamine neurotransmission in the PL and amphetamine microinfusions in the IL had the same effect of attenuating place conditioning. In contrast, place conditioning remained intact following preconditioning amphetamine microinfusions in the PL and dopamine receptor blockade in the IL. Instead, conditioned cue preference was attenuated following IL dopamine receptor blockade. CONCLUSION: These data indicate that PL dopaminergic mechanisms are critical for the acquisition of appetitive place learning, while IL dopamine may oppose the influence of PL dopamine upon hippocampal-dependent learning. Furthermore, they implicate a functional reciprocity between mPFC and associated subregions of the nucleus accumbens in the regulation of limbic information processing.


Asunto(s)
Condicionamiento Clásico/fisiología , Señales (Psicología) , Dopamina/metabolismo , Corteza Prefrontal/fisiología , Percepción Espacial/fisiología , Animales , Condicionamiento Clásico/efectos de los fármacos , Dextroanfetamina/farmacología , Antagonistas de Dopamina/farmacología , Inhibidores de Captación de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Flupentixol/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Corteza Prefrontal/efectos de los fármacos , Ratas , Receptores Dopaminérgicos/metabolismo , Percepción Espacial/efectos de los fármacos , Factores de Tiempo
2.
J Neurochem ; 126(2): 274-87, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23363435

RESUMEN

NMDA-type glutamate receptors mediate both trophic and excitotoxic signalling in CNS neurons. We have previously shown that blocking NMDAR- post-synaptic density-95 (PSD95) interactions provides significant protection from excitotoxicity and in vivo ischaemia; however, the mechanism of neuroprotection is unclear. Here, we report that blocking PSD-95 interactions with the Tat-NR2B9c peptide enhances a Ca²âº-dependent protective pathway converging on cAMP Response Element binding protein (CREB) activation. We provide evidence that Tat-NR2B9c neuroprotection from oxygen glucose deprivation and NMDA toxicity occurs in parallel with the activation of calmodulin kinase signalling and is dependent on a sustained phosphorylation of the CREB transcription factor and its activator CaMKIV. Tat-NR2B9c-dependent neuroprotection and CREB phosphorylation are blocked by coapplication of CaM kinase (KN93 and STO-609) or CREB (KG-501) inhibitors, and by siRNA knockdown of CaMKIV. These results are mirrored in vivo in a rat model of permanent focal ischaemia. Tat-NR2B9c application significantly reduces infarct size and causes a selective and sustained elevation in CaMKIV phosphorylation; effects which are blocked by coadministration of KN93. Thus, calcium-dependent nuclear signalling via CaMKIV and CREB is critical for neuroprotection via NMDAR-PSD95 blockade, both in vitro and in vivo. This study highlights the importance of maintaining neuronal function following ischaemic injury. Future stroke research should target neurotrophic and pro-survival signal pathways in the development of novel neuroprotective strategies.


Asunto(s)
Infarto Encefálico/prevención & control , Proteína de Unión a CREB/metabolismo , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Infarto Encefálico/etiología , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Glucosa/deficiencia , Hipoxia/patología , Técnicas In Vitro , Infarto de la Arteria Cerebral Media/complicaciones , Masculino , Neuronas/metabolismo , Nimodipina/farmacología , Fosforilación , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...