Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 289(15): 4564-4579, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35113495

RESUMEN

Vitamin K epoxide reductases (VKORs) are a large family of integral membrane enzymes found from bacteria to humans. Human VKOR, specific target of warfarin, has both the epoxide and quinone reductase activity to maintain the vitamin K cycle. Bacterial VKOR homologs, however, are insensitive to warfarin inhibition and are quinone reductases incapable of epoxide reduction. What affords the epoxide reductase activity in human VKOR remains unknown. Here, we show that a representative bacterial VKOR homolog can be converted to an epoxide reductase that is also inhibitable by warfarin. To generate this new activity, we first substituted several regions surrounding the active site of bacterial VKOR by those from human VKOR based on comparison of their crystal structures. Subsequent systematic substitutions narrowed down to merely eight residues, with the addition of a membrane anchor domain, that are responsible for the epoxide reductase activity. Substitutions corresponding to N80 and Y139 in human VKOR provide strong hydrogen bonding interactions to facilitate the epoxide reduction. The rest of six substitutions increase the size and change the shape of the substrate-binding pocket, and the membrane anchor domain stabilizes this pocket while allowing certain flexibility for optimal binding of the epoxide substrate. Overall, our study reveals the structural features of the epoxide reductase activity carried out by a subset of VKOR family in the membrane environment.


Asunto(s)
Oxidorreductasas , Warfarina , Compuestos Epoxi , Humanos , Oxidorreductasas/genética , Vitamina K 1/análogos & derivados , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/genética , Warfarina/química , Warfarina/farmacología
2.
Curr Res Struct Biol ; 2: 229-238, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34235482

RESUMEN

To successfully colonize a host or environment, certain genera and species of Gram-positive bacteria have evolved to utilize the so-called sortase-dependent pilus, a long multi-subunit and non-flagellar surface adhesin. One example of this is Lactobacillus rhamnosus GG, a gut-adapted probiotic strain that produces SpaCBA pili. These structures are covalent hetero-oligomers built from three types of pilin subunit, each with a specific location and function (i.e., backbone SpaA for length, tip SpaC for adhesion, and basal SpaB for anchoring). Functionally, the SpaCBA pilus exhibits a promiscuous affinity for components on intestinal surfaces (e.g., mucus, collagen, and epithelial cells), which is largely attributed to the SpaC subunit. Then again, the basal SpaB pilin, in addition to acting as the terminal subunit during pilus assembly, displays an out of character mucoadhesive function. To address the structural basis of this unusual dual functionality, we reveal the 2.39 â€‹Å resolution crystal structure of SpaB. SpaB consists of one immunoglobulin-like CnaB domain and contains a putative intermolecular isopeptide bond-linking lysine and internal isopeptide bond-asparagine in an FPKN pilin motif within the C-terminal end. Remarkably, we found that a C-terminal stretch of positively charged lysine and arginine residues likely accounts for the atypical mucoadhesiveness of SpaB. Although harboring an autocatalytic triad of residues for a potential internal isopeptide interaction, the SpaB crystal structure lacked the visible electron density for intact bond formation, yet its presence was subsequently confirmed by mass spectral analysis. Finally, we propose a structural model that captures the exclusive basal positioning of SpaB in the SpaCBA pilus.

3.
J Struct Biol ; 207(1): 74-84, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31026587

RESUMEN

For some Gram-positive genera and species, the long-extended and adhesive sortase-dependent pilus plays an essential role during host colonization, biofilm formation, and immune modulation. Lactobacillus rhamnosus GG is a gut-adapted commensal strain that harbors the operonic genes for the SpaCBA and SpaFED pili, both being comprised of three different protein subunits termed the backbone, tip, and basal pilins. Crystal structures of the backbone pilins (SpaA and SpaD) have recently been solved, and here we describe the high-resolution (1.5 Å) structural determination of the SpaE basal pilin. SpaE consists of two immunoglobulin-like CnaB domains, with each displaying a spontaneously formed internal isopeptide bond, though apparently slow forming in the N-terminal domain. Remarkably, SpaE contains an atypically lengthy unstructured C-terminal tail, along with an YPKN pilin motif peptide, which is normally reserved for backbone subunits. Based on our analysis of the crystal structure data, we provide a molecular model for the basal positioning of the SpaE pilin within the SpaFED pilus.


Asunto(s)
Proteínas Bacterianas/química , Fimbrias Bacterianas/química , Lacticaseibacillus rhamnosus/química , Secuencias de Aminoácidos , Cristalografía por Rayos X , Proteínas Fimbrias/química , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Modelos Moleculares
4.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 6): 321-327, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28580919

RESUMEN

SpaE is the predicted basal pilin subunit in the sortase-dependent SpaFED pilus from the gut-adapted and commensal Lactobacillus rhamnosus GG. Thus far, structural characterization of the cell-wall-anchoring basal pilins has remained difficult and has been limited to only a few examples from pathogenic genera and species. To gain a further structural understanding of the molecular mechanisms that are involved in the anchoring and assembly of sortase-dependent pili in less harmful bacteria, L. rhamnosus GG SpaE for crystallization was produced by recombinant expression in Escherichia coli. Although several attempts to crystallize the SpaE protein were unsuccessful, trigonal crystals that diffracted to a resolution of 3.1 Šwere eventually produced using PEG 3350 as a precipitant and high protein concentrations. Further optimization with a combination of additives led to the generation of SpaE crystals in an orthorhombic form that diffracted to a higher resolution of 1.5 Å. To expedite structure determination by SAD phasing, selenium-substituted (orthorhombic) SpaE crystals were grown and X-ray diffraction data were collected to 1.8 Šresolution.


Asunto(s)
Proteínas Bacterianas/química , Fimbrias Bacterianas/química , Lacticaseibacillus rhamnosus/química , Proteínas de la Membrana/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Fimbrias Bacterianas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Polietilenglicoles/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...