Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38893819

RESUMEN

We present a comparative study of the optical and dielectric anisotropy of a laterally fluorinated liquid crystal dimer and its homologous trimer, both exhibiting two nematic phases. In the high-temperature nematic phase, both oligomers exhibit positive optical anisotropy with similar magnitude, which, however, is lower in comparison with the optical anisotropy of the monomer. In the same temperature range, the dielectric permittivity along and perpendicular to the nematic director, measured on magnetically aligned samples, reveals negative dielectric anisotropy for both oligomers, which saturates as the temperature approaches the N-N phase transition temperature. Comparison of the dielectric anisotropies of the oligomers with the corresponding anisotropy of the monomer indicates a systematic variation of its magnitude with the number of the linked mesogenic units. Results are compared with the corresponding anisotropies of the cyanobiphenyl dimers, the archetypal compounds with two nematic phases, and are discussed in terms of the dipolar structure of the mesogens and the dipolar correlations in their nematic phases.

2.
Soft Matter ; 19(47): 9224-9238, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37997929

RESUMEN

We report on the temperature dependence of birefringence and of the static dielectric permittivity tensor in a series of binary mixtures between the symmetric, bent-shaped, 1'',9''-bis(4-cyanobiphenyl-4'-yl)nonane (CB9CB) dimer and the monomeric nematogen 5CB. In the studied composition range the mixtures exhibit two nematic phases with distinct birefringence and dielectric features. Birefringence measurements are used to estimate the temperature dependence of the tilt between the axis defining the nanoscale helical modulation of the low temperature nematic phase with the (local) direction of the maximal alignment of the cyanobiphenyl units. Planar as well as magnetically and/or electrically aligned samples are used to measure the perpendicular and parallel components of the dielectric permittivity in both nematic phases. A self-consistent molecular field theory that takes into account flexibility and symmetry of the constituent mesogens is introduced for the calculation of order parameters and intra-molecular orientational dipolar correlations of the flexible dimers as a function of temperature/concentration. Utilising the tilt angle, as calculated from the birefringence measurements, and the predictions of the molecular theory, dielectric permittivity is modelled in the framework of the anisotropic version of the Kirkwood-Fröhlich theory. Using the inter-molecular Kirkwood correlation factors as adjustable parameters, excellent agreement between theory and permittivity measurements across the whole temperature range and composition of the mixtures is obtained. The importance of the orientational, intra- and inter-molecular, dipolar correlations, their relative impact on the static dielectric properties, as well as their connection with the local structure of the nematic phases of bent-shaped bimesogens, is discussed.

3.
Phys Chem Chem Phys ; 25(13): 9083-9091, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36919840

RESUMEN

An achiral compound, DIO, known to exhibit three nematic phases namely N, NX and NF, is studied by polarizing microscopy and electro-optics for different surface conditions in confinement. The high temperature N phase assigned initially as a conventional nematic phase, shows two additional unusual features: the optical activity and the linear electro-optic response related to the polar nature of this phase. An appearance of chiral domains is explained by the spontaneous symmetry breaking arising from the saddle-splay elasticity and followed by the formation of helical domains of the opposite chirality. This is the first example of helical segregation observed in calamitic non-chiral molecules in the nematic phase. As reported previously, the ferronematic NF shows strong polar azimuthal surface interaction energy which stabilizes a homogeneous structure in planar aligned LC cells rubbed parallel and exhibits a twisted structure in cells with antiparallel buffing. The transmission spectra are simulated using Berreman's 4 × 4 matrix method. The observed agreement between the experimental and the simulated spectra quantitatively confirms the presence of twisted structures in antiparallel rubbed cells.

4.
Chemistry ; 29(11): e202203673, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36573704

RESUMEN

The correlation between the size of nanoparticles, the structure and shape of mesogenic ligands and the ensuing assembly behaviour is not really understood. Closer inspection shows very surprising features. Here, 2- and 4-nm gold nanoparticles (NPs) were synthesized, and grafted with a forked ligand containing two rod-like mesogens in its branches: one cholesterol, the other with azobenzene. The 4-nm NPs also contained n-hexylthiol as co-ligand. They were found to form a FCC cubic superlattice, whereas the 2-nm NPs form hexagonal HCP with weak birefringence, hence with partially oriented ligands. The structures were compared with those of related systems containing a range of different azobenzene-to-cholesterol ratios, all giving body-centred tetragonal superlattices with various degrees of anisotropy. Geometric analysis is presented in terms of the asphericity of the NPs' surroundings, requirement for space-filling and structural anisotropy. Some general rules are derived to help design the soft corona around the NPs in order to obtain superlattices with the desired structure and anisotropy.

5.
Opt Express ; 30(14): 24788-24803, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237024

RESUMEN

We present dynamic time-resolved measurements of a multi-pixel analog liquid crystal phase modulator driven at a 1 kHz frame rate. A heterodyne interferometer is used to interrogate two pixels independently and simultaneously, to deconvolve phase modulation with a wide bandwidth. The root mean squared optical phase error within a 30 Hz to 25 kHz bandwidth is <0.5° and the crosstalk rejection is 50 dB. Measurements are shown for a custom-built device with a flexoelectro-optic chiral nematic liquid crystal. However, the technique is applicable to many different types of optical phase modulators and spatial light modulators.

6.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232324

RESUMEN

Polarized beam infrared (IR) spectroscopy provides valuable information on changes in the orientation of samples in nematic phases, especially on the role of intermolecular interactions in forming the periodically modulated twist-bent phase. Infrared absorbance measurements and quantum chemistry calculations based on the density functional theory (DFT) were performed to investigate the structure and how the molecules interact in the nematic (N) and twist-bend (NTB) phases of thioether dimers. The nematic twist-bend phase observed significant changes in the mean IR absorbance. On cooling, the transition from the N phase to the NTB phase was found to be accompanied by a marked decrease in absorbance for longitudinal dipoles. Then, with further cooling, the absorbance of the transverse dipoles increased, indicating that transverse dipoles became correlated in parallel. To investigate the influence of the closest neighbors, DFT calculations were performed. As a result of the optimization of the molecular cores system, we observed changes in the square of the transition dipoles, which well corresponds to absorbance changes observed in the IR spectra. Interactions of molecules dominated by pairing were observed, as well as the axial shift of the core to each other.


Asunto(s)
Cristales Líquidos , Teoría Funcional de la Densidad , Cristales Líquidos/química , Modelos Químicos , Transición de Fase , Sulfuros
7.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35887352

RESUMEN

Infrared spectroscopy (IR) and quantum chemistry calculations that are based on the density functional theory (DFT) have been used to study the structure and molecular interactions of the nematic and twist-bend phases of thioether-linked dimers. Infrared absorbance measurements were conducted in a polarized beam for a homogeneously aligned sample in order to obtain more details about the orientation of the vibrational transition dipole moments. The distributions to investigate the structure and conformation of the molecule dihedral angle were calculated. The calculated spectrum was compared with the experimental infrared spectra and as a result, detailed vibrational assignments are reported.


Asunto(s)
Cristales Líquidos , Cristales Líquidos/química , Modelos Moleculares , Teoría Cuántica , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Sulfuros , Vibración
8.
Chem Asian J ; 17(8): e202200057, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35192226

RESUMEN

We report the formation of a 3D body-centred self-assembled superlattice of gold nanoparticles whose interparticle gap, and hence its plasmonic properties, are adjustable exclusively in the xy-plane. Thus, even though the particles are spherical, their anisotropic packing generates tailorable plasmonic dichroism. The gold nanoparticles are coated with forked ligands containing two mesogens: either two cholesterols ("twin"), one cholesterol and one azobenzene ("Janus"), or a mixture of the two. Beside the body-centered arrangement of gold nanoparticles, the structure also contains unusual two-dimensionally x-y dual undulated (eggbox-like) smectic-like layers of mesogens. Moreover, the presence of azobenzene mesogens allows the superlattice to be melted through UV-induced photo-isomerization; the process is reversible displaying low fatigue on repeated cycling.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Ligandos , Nanopartículas del Metal/química
9.
ACS Omega ; 6(7): 4630-4640, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33644569

RESUMEN

The discovery of electrochemical switching of the Lα phase of chlorpromazine hydrochloride in water is reported. The phase is characterized using polarizing microscopy, X-ray scattering, rheological measurements, and microelectrode voltammetry. Fast, heterogeneous oxidation of the lyotropic liquid crystal is shown to cause a phase change resulting from the disordering of the structural order in a stepwise process. The underlying molecular dynamics is considered to be a cooperative effect of both increasing electrostatic interactions and an unfolding of the monomers from "butterfly"-shaped in the reduced form to planar in the oxidized form.

10.
Phys Chem Chem Phys ; 23(7): 4151-4160, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33564811

RESUMEN

Fourier-transform infrared polarized spectroscopy was employed, to obtain the three components of the infrared absorbance for a series of bent-shaped dimers containing double fluorinated terphenyl core (DTC5Cn, n = 5, 7, 9, 11). The data were used to calculate both uniaxial and biaxial order parameters, for various molecular groups of dimers. The molecule bend was estimated based on the observed differences between the uniaxial order parameters for the terphenyl core and central hydrocarbon linker. The orientational order, distinctly reverses its monotonic trend of increase to decrease at the transition temperature, from the uniaxial nematic to the twist-bend nematic phase as result of the director tilt in latter/(twist-bend) phase. The molecular biaxiality, which is negligible in the nematic phase, starts increasing on entering the twist-bend nematic phase, following a sin-square relationships with the tilt angle. The local director curvature is found to be controlled by the molecular biaxiality parameter.

11.
RSC Adv ; 11(5): 2917-2925, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35424219

RESUMEN

The understanding of the relationship between molecular structure and the formation of the nematic twist-bend phase is still at an early stage of development. This is mainly related to molecular geometry, while the correlation between the nematic twist-bend phase and the electronic structure is ambiguous. To explore the electronic effect on properties and stabilization of the nematic twist-bend phase we investigated 2',3'-difluoro-4,4''-dipentyl-p-terphenyl dimers (DTC5Cn). We used polarized fourier transform infrared spectroscopy, which can, at least in principle, provide information about the ordering in the twist-bend phase. All dimers show a significant drop in the average value of the transition dipole moment for parallel dipoles at the transition from the nematic to the twist-bend phase, and an increase for perpendicular dipoles, despite remaining unchanged for the monomer. Density functional theory calculations were used to determine the geometric and electronic properties of the hydrogen bonded complexes. We have provided experimental and theoretical evidence of stabilization of the nematic twist-bend phase by arrays of multiple hydrogen bonds (XF⋯HX, X-benzene ring).

12.
Appl Opt ; 59(9): 2668-2673, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32225814

RESUMEN

We have solved the long-standing problems of stability and hysteresis, and we are able to obtain the homogeneous uniform lying helix structure in polymer-free cholesteric liquid crystals. This is instrumental for the present work to demonstrate the analog modulation at high speed and high precision. The device is configured for the transverse field switching wherein the substrate surface is flat. In addition to the response time of 10 ms at room temperature, we have obtained the R-squared and the adjusted R-squared as a measure of true sine wave for the sinusoidal responding transmissions from 1 Hz to 100 kHz that are all greater than 0.9993. In a Michelson interferometer, the phase shift at wavelength 633 nm after two passes has been measured to be equal to about $\pi /{9}$π/9 at 4.6 V/µm for the chiral-doped nematic mixtures E7.

13.
Chem Sci ; 12(5): 1778-1782, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34163939

RESUMEN

Gold nanoparticles (AuNPs) have been prepared and surface-functionalized with a mixture of 1-hexanethiol co-ligands and chiral discogen ligands separated from a disulfide function via a flexible spacer. Polarized optical microscopy together with differential scanning calorimetry showed that the organic corona of the nanocomposite forms a stable chiral discotic nematic phase with a wide thermal range. Synchrotron X-ray diffraction showed that gold NPs form a superlattice with p2 plane symmetry. Analysis indicated that the organic corona takes up the shape of a flexible macrodisk. Synchrotron radiation-based circular dichroism signals of thin films are significantly enhanced on the isotropic-LC transition, in line with the formation of a chiral nematic phase of the organic corona. At lower temperatures the appearance of CD signals at longer wavelengths is associated with the chiral organisation of the NPs and is indicative of the formation of a second helical structure. The decreased volume required and the chiral environment of the disc ligands drives the nanoparticles into columns that arrange helically, parallel to the shortest axis of the two dimensional lattice.

14.
Phys Chem Chem Phys ; 21(24): 13078-13089, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31168534

RESUMEN

We report dynamic light scattering measurements of the orientational (Frank) elastic constants and associated viscosities among a homologous series of a liquid crystalline dimer, trimer, and tetramer exhibiting a uniaxial nematic (N) to twist-bend nematic (NTB) phase transition. The elastic constants for director splay (K11), twist (K22) and bend (K33) exhibit the relations K11 > K22 > K33 and K11/K22 > 2 over the bulk of the N phase. Their behavior near the N-NTB transition shows dependency on the parity of the number (n) of the rigid mesomorphic units in the flexible n-mers. Namely, the bend constant K33 in the dimer and tetramer turns upward and starts increasing close to the transition, following a monotonic decrease through most of the N phases. In contrast, K33 for the trimer flattens off just above the transition and shows no pretransitional enhancement. The twist constant K22 increases pretransitionally in both even and odd n-mers, but more weakly so in the trimer, while K11 increases steadily on cooling without evidence of pretransitional behavior in any n-mer. The viscosities associated with pure splay, twist-dominated twist-bend, and pure bend fluctuations in the N phase are comparable in magnitude to those of rod-like monomers. All three viscosities increase with decreasing temperature, but the bend viscosity in particular grows sharply near the N-NTB transition. The N-NTB pretransitional behavior is shown to be in qualitative agreement with the predictions of a coarse-grained theory, which models the NTB phase as a "pseudo-layered" structure with the symmetry (but not the mass density wave) of a smectic-A* phase.

15.
Opt Express ; 27(11): 15184-15193, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163718

RESUMEN

We present here the first time-resolved tilt-angle and retardance measurements for large-tilt (>45°) flexoelectro-optic liquid crystal modulators. These devices have potential for next generation fast switching (>1 kHz), 0-2π analog phase spatial light modulators (SLMs), with applications in optical beamsteering, microscopy and micromachining. The chiral nematic device used consisted of a mixture of CBC7CB and the chiral dopant R5011 in a nominally 5 µm-thick cell, aligned in the uniform lying helix mode. As the device is dynamically switched over angles of ± 54°, retardance changes of up to 0.17λ are observed. Furthermore, the time-resolved measurements reveal an asymmetry in the tilt in the optic-axis depending on the polarity of the applied electric field. The change in the optic-axis exhibits a pattern dependence, whereby it is determined by both the pulse history and the applied field. This pattern dependence results in tilt-angle errors of up to 8.8°, which could manifest as phase errors as large as 35.2° in potential SLMs. These time domain measurements may allow correction of these deterministic errors, to realize practical devices.

16.
Sci Rep ; 9(1): 7016, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064999

RESUMEN

In this paper, we demonstrate a flexoelectro-optic liquid crystal phase-only device that uses a chiral nematic reflector to achieve full 2π phase modulation. This configuration is found to be very tolerant to imperfections in the chiral nematic reflector provided that the flexoelectro-optic LC layer fulfils the half-wave condition. Encouragingly, the modulation in the phase, which operates at kHz frame rates, is also accompanied by low amplitude modulation. The configuration demonstrated herein is particularly promising for the development of next-generation liquid crystal on silicon spatial light modulators.

17.
Phys Chem Chem Phys ; 21(8): 4523-4537, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30735227

RESUMEN

Molecular order and dynamics of the CB-C9-CB liquid crystalline dimer exhibiting the nematic (N) and the twist bend nematic (Ntb) phases were investigated by proton NMR spectroscopy, using fields of 0.78 T and 7.04 T, and relaxometry. The first relaxometry experiments for a very wide Larmor frequency domain (8 kHz-300 MHz) on this system, using a combination of standard and fast field cycling NMR techniques, were performed. The spectroscopy results in the Ntb phase allowed us to probe the local molecular orientation relative to the Ntb helix axis. The relaxation data were analyzed considering order director fluctuations (ODF), molecular self-diffusion (SD) and local molecular rotations/reorientations (R) relaxation mechanisms. Global fits of theoretical relaxation models, as a function of temperature and Larmor frequency, for the phases under investigation, allowed for the determination of rotational correlation times, diffusion coefficients, viscoelastic parameters, correlation lengths and activation energies (in the case of thermally activated mechanisms). A clear difference between the structures of the N and Ntb phases was detected from the results of proton spin-lattice relaxation through distinct temperature and frequency dependencies' signatures of the collective modes. Significant pre-transitional effects were observed at the N-Ntb phase transition both from relaxometry and spectroscopy data. The experimental results correlate to data and models for comparable liquid crystalline systems.

18.
Nanoscale Adv ; 1(1): 254-264, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36132481

RESUMEN

We report the synthesis of the first stable, solution-processable and photocrosslinkable hybrid organic/inorganic titanium dioxide nanorods as 'hairy rods' coated with phosphonate ligands with photoreactive coumarin groups located in a terminal position. The relationships between the chemical structure of the diethyl-ω-[(7-oxycoumaryl)-n-alkyl]phosphonate ligands on the ligand exchange rate (LER) and the solubility of the resultant ligand-stabilized titanium dioxide nanorods in organic solvents are elucidated. These TiO2 nanorods, with an organic ligand coating, are short enough (aspect ratio = 5-8) to be dissolved in chlorobenzene at high concentrations, but long enough to form lyotropic nematic liquid crystals. These colloidal solutions are used to deposit a thin, uniform layer of hybrid organic/inorganic TiO2 nanorods with their long axes in the plane of a flat, smooth substrate through a self-organization process. Standard photolithographic patterning creates an insoluble dielectric layer of the desired thickness, smoothness and uniformity and with a dielectric constant of sufficient magnitude, k = 8, suitable for the fabrication of multilayer, plastic electronic devices using solution-based fabrication techniques, such as ink-jet printing, used in roll-to-roll manufacturing.

19.
Phys Chem Chem Phys ; 20(39): 25268-25274, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30276414

RESUMEN

A modulated and conventional DSC study of the transitions between the twist-bend nematic (Ntb), regular nematic (N) and isotropic liquid (Iso) phases was performed on a series of difluoroterphenyl-based dimers with (CH2)n spacers; n = 5, 7, 9, 11. The enthalpy of Ntb-N transition decreases steeply with increasing n, while that of the N-Iso transition increases with n; hence, the greatest effect of increasing n is a lowering N phase enthalpy. Based on past and present X-ray scattering experiments, we estimate the average molecular conformation in the Ntb phase and perform torsion energy calculations on the spacer. From this, the lowering enthalpy of the N phase is attributed to the decreasing torsional energy cost of bringing the two terphenyls from an inclined twisted conformation in the Ntb phase, to almost parallel in the N phase. With increasing n the C-C bonds of the spacers twist less away from their trans conformation, thereby reducing the overall torsion energy of the N phase. It is speculated that the nearly continuous nature of the Ntb-N transition in n = 11 dimer is associated with the divergence of the helical pitch toward infinity which is intercepted by a final jump at the very weak (0.01 J g-1) first-order transition. Small-angle X-ray scattering results suggest similar local cybotactic layering in both nematic phases, with four sublayers, i.e. tails, mesogens, spacers, mesogens.

20.
Opt Lett ; 43(18): 4362-4365, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-30211871

RESUMEN

We present a flexoelectro-optic liquid crystal (LC) analog phase modulator with >2π phase range at a 1 kHz switching frequency. The chiral nematic LC mixture consists of the bimesogen CBC7CB with chiral dopant R5011, aligned in the uniform lying helix mode. The mixture exhibits >±π/4 rotation of the optic axis for a drive voltage of ±21.5 V (E=±4.5 V µm-1). The rotation of the optic axis is converted into a phase modulation with the aid of a reflective device configuration incorporating a ∼5 µm LC cell, a polarizer, two quarter-wave plates, and a mirror. The residual amplitude modulation is found to be <23%. This flexoelectro-optic phase modulator combination has the potential to enable analog spatial light modulators with very fast frame rates suitable for a range of applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...