Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Adv Sci (Weinh) ; 11(13): e2307050, 2024 Apr.
Article En | MEDLINE | ID: mdl-38273642

Bone fracture healing is regulated by mechanobiological cues. Both, extracellular matrix (ECM) deposition and microvascular assembly determine the dynamics of the regenerative processes. Mechanical instability as by inter-fragmentary shear or compression is known to influence early ECM formation and wound healing. However, it remains unclear how these external cues shape subsequent ECM and microvascular network assembly. As transcriptional coactivators, the mechanotransducers yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) translate physical cues into downstream signaling events, yet their role in sprouting angiogenesis into the hematoma after injury is unknown. Using bone healing as model system for scar-free regeneration, the role of endothelial YAP/TAZ in combination with tuning the extrinsic mechanical stability via fracture fixation is investigated. Extrinsically imposed shear across the gap delayed hematoma remodeling and shaped the morphology of early collagen fiber orientations and microvascular networks, suggesting that enhanced shear increased the nutrient exchange in the hematoma. In contrast, endothelial YAP/TAZ deletion has little impact on the overall vascularization of the fracture gap, yet slightly increases the collagen fiber deposition under semi-rigid fixation. Together, these data provide novel insights into the respective roles of endothelial YAP/TAZ and extrinsic mechanical cues in orchestrating the process of bone regeneration.


Hematoma , Mechanotransduction, Cellular , Collagen/metabolism , Mechanotransduction, Cellular/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Fracture Healing/physiology , Humans , Hematoma/metabolism , Hematoma/pathology , Bone and Bones/metabolism , Bone and Bones/pathology
2.
PLoS Comput Biol ; 19(11): e1011647, 2023 Nov.
Article En | MEDLINE | ID: mdl-37956208

Sprouting angiogenesis plays a key role during bone regeneration. For example, insufficient early revascularization of the injured site can lead to delayed or non-healing. During sprouting, endothelial cells are known to be mechano-sensitive and respond to local mechanical stimuli. Endothelial cells interact and communicate mechanically with their surroundings, such as outer-vascular stromal cells, through cell-induced traction forces. In addition, external physiological loads act at the healing site, resulting in tissue deformations and impacting cellular arrangements. How these two distinct mechanical cues (cell-induced and external) impact angiogenesis and sprout patterning in early bone healing remains however largely unknown. Therefore, the aim of this study was to investigate the relative role of externally applied and cell-induced mechanical signals in driving sprout patterning at the onset of bone healing. To investigate cellular self-organisation in early bone healing, an in silico model accounting for the mechano-regulation of sprouting angiogenesis and stromal cell organization was developed. Computer model predictions were compared to in vivo experiments of a mouse osteotomy model stabilized with a rigid or a semirigid fixation system. We found that the magnitude and orientation of principal strains within the healing region can explain experimentally observed sprout patterning, under both fixation conditions. Furthermore, upon simulating the selective inhibition of either cell-induced or externally applied mechanical cues, external mechanical signals appear to overrule the mechanical communication acting on a cell-cell interaction level. Such findings illustrate the relevance of external mechanical signals over the local cell-mediated mechanical cues and could be used in the design of fracture treatment strategies for bone regeneration.


Endothelial Cells , Fracture Healing , Mice , Animals , Fracture Healing/physiology , Bone Regeneration , Disease Models, Animal , Cell Communication , Stress, Mechanical
3.
Adv Sci (Weinh) ; 9(28): e2202317, 2022 10.
Article En | MEDLINE | ID: mdl-35971167

Intimal hyperplasia (IH) represents a major challenge following cardiovascular interventions. While mechanisms are poorly understood, the inefficient preventive methods incentivize the search for novel therapies. A vessel-on-a-dish platform is presented, consisting of direct-contact cocultures with human primary endothelial cells (ECs) and smooth muscle cells (SMCs) exposed to both laminar pulsatile and disturbed flow on an orbital shaker. With contractile SMCs sitting below a confluent EC layer, a model that successfully replicates the architecture of a quiescent vessel wall is created. In the novel IH model, ECs are seeded on synthetic SMCs at low density, mimicking reendothelization after vascular injury. Over 3 days of coculture, ECs transition from a network conformation to confluent 2D islands, as promoted by pulsatile flow, resulting in a "defected" EC monolayer. In defected regions, SMCs incorporated plasma fibronectin into fibers, increased proliferation, and formed multilayers, similarly to IH in vivo. These phenomena are inhibited under confluent EC layers, supporting therapeutic approaches that focus on endothelial regeneration rather than inhibiting proliferation, as illustrated in a proof-of-concept experiment with Paclitaxel. Thus, this in vitro system offers a new tool to study EC-SMC communication in IH pathophysiology, while providing an easy-to-use translational disease model platform for low-cost and high-content therapeutic development.


Endothelial Cells , Muscle, Smooth, Vascular , Fibronectins , Humans , Hyperplasia , Myocytes, Smooth Muscle/physiology , Paclitaxel
...