Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
2.
Front Neurosci ; 18: 1286130, 2024.
Article En | MEDLINE | ID: mdl-38529267

Introduction: Interpersonal synchronization involves the alignment of behavioral, affective, physiological, and brain states during social interactions. It facilitates empathy, emotion regulation, and prosocial commitment. Mental disorders characterized by social interaction dysfunction, such as Autism Spectrum Disorder (ASD), Reactive Attachment Disorder (RAD), and Social Anxiety Disorder (SAD), often exhibit atypical synchronization with others across multiple levels. With the introduction of the "second-person" neuroscience perspective, our understanding of interpersonal neural synchronization (INS) has improved, however, so far, it has hardly impacted the development of novel therapeutic interventions. Methods: To evaluate the potential of INS-based treatments for mental disorders, we performed two systematic literature searches identifying studies that directly target INS through neurofeedback (12 publications; 9 independent studies) or brain stimulation techniques (7 studies), following PRISMA guidelines. In addition, we narratively review indirect INS manipulations through behavioral, biofeedback, or hormonal interventions. We discuss the potential of such treatments for ASD, RAD, and SAD and using a systematic database search assess the acceptability of neurofeedback (4 studies) and neurostimulation (4 studies) in patients with social dysfunction. Results: Although behavioral approaches, such as engaging in eye contact or cooperative actions, have been shown to be associated with increased INS, little is known about potential long-term consequences of such interventions. Few proof-of-concept studies have utilized brain stimulation techniques, like transcranial direct current stimulation or INS-based neurofeedback, showing feasibility and preliminary evidence that such interventions can boost behavioral synchrony and social connectedness. Yet, optimal brain stimulation protocols and neurofeedback parameters are still undefined. For ASD, RAD, or SAD, so far no randomized controlled trial has proven the efficacy of direct INS-based intervention techniques, although in general brain stimulation and neurofeedback methods seem to be well accepted in these patient groups. Discussion: Significant work remains to translate INS-based manipulations into effective treatments for social interaction disorders. Future research should focus on mechanistic insights into INS, technological advancements, and rigorous design standards. Furthermore, it will be key to compare interventions directly targeting INS to those targeting other modalities of synchrony as well as to define optimal target dyads and target synchrony states in clinical interventions.

3.
Sci Rep ; 14(1): 1084, 2024 01 11.
Article En | MEDLINE | ID: mdl-38212349

Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.


Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/psychology , Benchmarking , Brain/diagnostic imaging , Neuroimaging/methods , Machine Learning , Magnetic Resonance Imaging/methods
4.
Elife ; 122023 Nov 23.
Article En | MEDLINE | ID: mdl-37994903

Reproducible research and open science practices have the potential to accelerate scientific progress by allowing others to reuse research outputs, and by promoting rigorous research that is more likely to yield trustworthy results. However, these practices are uncommon in many fields, so there is a clear need for training that helps and encourages researchers to integrate reproducible research and open science practices into their daily work. Here, we outline eleven strategies for making training in these practices the norm at research institutions. The strategies, which emerged from a virtual brainstorming event organized in collaboration with the German Reproducibility Network, are concentrated in three areas: (i) adapting research assessment criteria and program requirements; (ii) training; (iii) building communities. We provide a brief overview of each strategy, offer tips for implementation, and provide links to resources. We also highlight the importance of allocating resources and monitoring impact. Our goal is to encourage researchers - in their roles as scientists, supervisors, mentors, instructors, and members of curriculum, hiring or evaluation committees - to think creatively about the many ways they can promote reproducible research and open science practices in their institutions.


Mentors , Physicians , Humans , Reproducibility of Results , Personnel Selection , Research Personnel
5.
Neurophotonics ; 10(2): 023515, 2023 Apr.
Article En | MEDLINE | ID: mdl-36908680

Significance: The expansion of functional near-infrared spectroscopy (fNIRS) methodology and analysis tools gives rise to various design and analytical decisions that researchers have to make. Several recent efforts have developed guidelines for preprocessing, analyzing, and reporting practices. For the planning stage of fNIRS studies, similar guidance is desirable. Study preregistration helps researchers to transparently document study protocols before conducting the study, including materials, methods, and analyses, and thus, others to verify, understand, and reproduce a study. Preregistration can thus serve as a useful tool for transparent, careful, and comprehensive fNIRS study design. Aim: We aim to create a guide on the design and analysis steps involved in fNIRS studies and to provide a preregistration template specified for fNIRS studies. Approach: The presented preregistration guide has a strong focus on fNIRS specific requirements, and the associated template provides examples based on continuous-wave (CW) fNIRS studies conducted in humans. These can, however, be extended to other types of fNIRS studies. Results: On a step-by-step basis, we walk the fNIRS user through key methodological and analysis-related aspects central to a comprehensive fNIRS study design. These include items specific to the design of CW, task-based fNIRS studies, but also sections that are of general importance, including an in-depth elaboration on sample size planning. Conclusions: Our guide introduces these open science tools to the fNIRS community, providing researchers with an overview of key design aspects and specification recommendations for comprehensive study planning. As such it can be used as a template to preregister fNIRS studies or merely as a tool for transparent fNIRS study design.

6.
Psychol Assess ; 35(1): 12-22, 2023 Jan.
Article En | MEDLINE | ID: mdl-36355690

Retrospective self-reports of childhood maltreatment (CM) are widely used. However, their validity has been questioned due to potential depressive bias. Yet, investigations of this matter are sparse. Thus, we investigated to what extent retrospective maltreatment reports vary in relation to longitudinal changes in depressive symptomatology. Two-year temporal stability of maltreatment reports was assessed via the Childhood Trauma Questionnaire (CTQ). Diagnosis of major depressive disorder (MDD) and depressive symptoms were assessed using the Structured Clinical Interview for DSM-IV and the Beck Depression Inventory (BDI). We included a total of n = 419 healthy controls (HC), n = 347 MDD patients, and a subsample with an initial depressive episode between both assessments (n = 27), from two independent cohorts (Marburg-Münster-affective-disorders-cohort-study and Münster-Neuroimaging-cohort). Analysis plan and hypotheses were preregistered prior to data analysis. Dimensional CTQ scores were highly stable in HC and MDD across both cohorts (ICC = .956; 95% CI [.949, .963] and ICC = .950; 95% CI [.933, .963]) and temporal stability did not differ between groups. Stability was lower for cutoff-based binary CTQ scores (K = .551; 95% CI [.479, .622] and K = .507; 95% CI [.371, .640]). Baseline dimensional CTQ scores were associated with concurrent and future BDI scores. However, longitudinal changes in BDI scores predicted variability in dimensional CTQ scores only to a small extent across cohorts (b = 0.101, p = .009, R² = .021 and b = 0.292, p = .320), with the effect being driven by emotional maltreatment subscales. Findings suggest that the CTQ provides temporally stable self-reports of CM in healthy and depressed populations and is only marginally biased by depressive symptomatology. A dimensional rather than binary conceptualization of maltreatment is advised for improving psychometric quality. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Child Abuse , Depressive Disorder, Major , Humans , Adult , Child , Retrospective Studies , Depressive Disorder, Major/diagnosis , Self Report , Cohort Studies , Surveys and Questionnaires , Child Abuse/diagnosis , Child Abuse/psychology
8.
Article En | MEDLINE | ID: mdl-33684623

BACKGROUND: Major depressive disorder (MDD) and type 2 diabetes mellitus (T2D) are known to share clinical comorbidity and to have genetic overlap. Besides their shared genetics, both diseases seem to be associated with alterations in brain structural connectivity and impaired cognitive performance, but little is known about the mechanisms by which genetic risk of T2D might affect brain structure and function and if they do, how these effects could contribute to the disease course of MDD. METHODS: This study explores the association of polygenic risk for T2D with structural brain connectome topology and cognitive performance in 434 nondiabetic patients with MDD and 539 healthy control subjects. RESULTS: Polygenic risk score for T2D across MDD patients and healthy control subjects was found to be associated with reduced global fractional anisotropy, a marker of white matter microstructure, an effect found to be predominantly present in MDD-related fronto-temporo-parietal connections. A mediation analysis further suggests that this fractional anisotropy variation may mediate the association between polygenic risk score and cognitive performance. CONCLUSIONS: Our findings provide preliminary evidence of a polygenic risk for T2D to be linked to brain structural connectivity and cognition in patients with MDD and healthy control subjects, even in the absence of a direct T2D diagnosis. This suggests an effect of T2D genetic risk on white matter integrity, which may mediate an association of genetic risk for diabetes and cognitive impairments.


Connectome , Depressive Disorder, Major , Diabetes Mellitus, Type 2 , Brain , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Humans , Risk Factors
9.
Front Aging Neurosci ; 13: 682683, 2021.
Article En | MEDLINE | ID: mdl-34177558

Dementia describes a set of symptoms that occur in neurodegenerative disorders and that is characterized by gradual loss of cognitive and behavioral functions. Recently, non-invasive neurofeedback training has been explored as a potential complementary treatment for patients suffering from dementia or mild cognitive impairment. Here we systematically reviewed studies that explored neurofeedback training protocols based on electroencephalography or functional magnetic resonance imaging for these groups of patients. From a total of 1,912 screened studies, 10 were included in our final sample (N = 208 independent participants in experimental and N = 81 in the control groups completing the primary endpoint). We compared the clinical efficacy across studies, and evaluated their experimental designs and reporting quality. In most studies, patients showed improved scores in different cognitive tests. However, data from randomized controlled trials remains scarce, and clinical evidence based on standardized metrics is still inconclusive. In light of recent meta-research developments in the neurofeedback field and beyond, quality and reporting practices of individual studies are reviewed. We conclude with recommendations on best practices for future studies that investigate the effects of neurofeedback training in dementia and cognitive impairment.

10.
Neuropsychopharmacology ; 46(8): 1510-1517, 2021 07.
Article En | MEDLINE | ID: mdl-33958703

We currently observe a disconcerting phenomenon in machine learning studies in psychiatry: While we would expect larger samples to yield better results due to the availability of more data, larger machine learning studies consistently show much weaker performance than the numerous small-scale studies. Here, we systematically investigated this effect focusing on one of the most heavily studied questions in the field, namely the classification of patients suffering from Major Depressive Disorder (MDD) and healthy controls based on neuroimaging data. Drawing upon structural MRI data from a balanced sample of N = 1868 MDD patients and healthy controls from our recent international Predictive Analytics Competition (PAC), we first trained and tested a classification model on the full dataset which yielded an accuracy of 61%. Next, we mimicked the process by which researchers would draw samples of various sizes (N = 4 to N = 150) from the population and showed a strong risk of misestimation. Specifically, for small sample sizes (N = 20), we observe accuracies of up to 95%. For medium sample sizes (N = 100) accuracies up to 75% were found. Importantly, further investigation showed that sufficiently large test sets effectively protect against performance misestimation whereas larger datasets per se do not. While these results question the validity of a substantial part of the current literature, we outline the relatively low-cost remedy of larger test sets, which is readily available in most cases.


Depressive Disorder, Major , Depression , Depressive Disorder, Major/diagnostic imaging , Humans , Machine Learning , Magnetic Resonance Imaging , Neuroimaging
11.
Neurosci Biobehav Rev ; 125: 33-56, 2021 06.
Article En | MEDLINE | ID: mdl-33587957

Major depressive disorder (MDD) is the leading cause of disability worldwide. Neurofeedback training has been suggested as a potential additional treatment option for MDD patients not reaching remission from standard care (i.e., psychopharmacology and psychotherapy). Here we systematically reviewed neurofeedback studies employing electroencephalography, or functional magnetic resonance-based protocols in depressive patients. Of 585 initially screened studies, 24 were included in our final sample (N = 480 patients in experimental and N = 194 in the control groups completing the primary endpoint). We evaluated the clinical efficacy across studies and attempted to group studies according to the control condition categories currently used in the field that affect clinical outcomes in group comparisons. In most studies, MDD patients showed symptom improvement superior to the control group(s). However, most articles did not comply with the most stringent study quality and reporting practices. We conclude with recommendations on best practices for experimental designs and reporting standards for neurofeedback training.


Depressive Disorder, Major , Neurofeedback , Depressive Disorder, Major/therapy , Electroencephalography , Humans , Magnetic Resonance Imaging , Treatment Outcome
12.
Cereb Cortex Commun ; 1(1): tgaa009, 2020.
Article En | MEDLINE | ID: mdl-32864612

The organizing principle of human motor cortex does not follow an anatomical body map, but rather a distributed representational structure in which motor primitives are combined to produce motor outputs. Electrophysiological recordings in primates and human imaging data suggest that M1 encodes kinematic features of movements, such as joint position and velocity. However, M1 exhibits well-documented sensory responses to cutaneous and proprioceptive stimuli, raising questions regarding the origins of kinematic motor representations: are they relevant in top-down motor control, or are they an epiphenomenon of bottom-up sensory feedback during movement? Here we provide evidence for spatially and temporally distinct encoding of kinematic and muscle information in human M1 during the production of a wide variety of naturalistic hand movements. Using a powerful combination of high-field functional magnetic resonance imaging and magnetoencephalography, a spatial and temporal multivariate representational similarity analysis revealed encoding of kinematic information in more caudal regions of M1, over 200 ms before movement onset. In contrast, patterns of muscle activity were encoded in more rostral motor regions much later after movements began. We provide compelling evidence that top-down control of dexterous movement engages kinematic representations in caudal regions of M1 prior to movement production.

13.
Front Neurosci ; 14: 594, 2020.
Article En | MEDLINE | ID: mdl-32848528

Background: The effects of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)-neurofeedback on brain activation and behaviors have been studied extensively in the past. More recently, researchers have begun to investigate the effects of functional near-infrared spectroscopy-based neurofeedback (fNIRS-neurofeedback). FNIRS is a functional neuroimaging technique based on brain hemodynamics, which is easy to use, portable, inexpensive, and has reduced sensitivity to movement artifacts. Method: We provide the first systematic review and database of fNIRS-neurofeedback studies, synthesizing findings from 22 peer-reviewed studies (including a total of N = 441 participants; 337 healthy, 104 patients). We (1) give a comprehensive overview of how fNIRS-neurofeedback training protocols were implemented, (2) review the online signal-processing methods used, (3) evaluate the quality of studies using pre-set methodological and reporting quality criteria and also present statistical sensitivity/power analyses, (4) investigate the effectiveness of fNIRS-neurofeedback in modulating brain activation, and (5) review its effectiveness in changing behavior in healthy and pathological populations. Results and discussion: (1-2) Published studies are heterogeneous (e.g., neurofeedback targets, investigated populations, applied training protocols, and methods). (3) Large randomized controlled trials are still lacking. In view of the novelty of the field, the quality of the published studies is moderate. We identified room for improvement in reporting important information and statistical power to detect realistic effects. (4) Several studies show that people can regulate hemodynamic signals from cortical brain regions with fNIRS-neurofeedback and (5) these studies indicate the feasibility of modulating motor control and prefrontal brain functioning in healthy participants and ameliorating symptoms in clinical populations (stroke, ADHD, autism, and social anxiety). However, valid conclusions about specificity or potential clinical utility are premature. Conclusion: Due to the advantages of practicability and relatively low cost, fNIRS-neurofeedback might provide a suitable and powerful alternative to EEG and fMRI neurofeedback and has great potential for clinical translation of neurofeedback. Together with more rigorous research and reporting practices, further methodological improvements may lead to a more solid understanding of fNIRS-neurofeedback. Future research will benefit from exploiting the advantages of fNIRS, which offers unique opportunities for neurofeedback research.

14.
Front Hum Neurosci ; 14: 226, 2020.
Article En | MEDLINE | ID: mdl-32760259

Ischemic stroke of the middle cerebral artery (MCA), a major brain vessel that supplies the primary motor and premotor cortex, is one of the most common causes for severe upper limb impairment. Currently available motor rehabilitation training largely lacks satisfying efficacy with over 70% of stroke survivors showing residual upper limb dysfunction. Motor imagery-based functional magnetic resonance imaging neurofeedback (fMRI-NF) has been suggested as a potential therapeutic technique to improve motor impairment in stroke survivors. In this preregistered proof-of-concept study (https://osf.io/y69jc/), we translated graded fMRI-NF training, a new paradigm that we have previously studied in healthy participants, to first-time MCA stroke survivors with residual mild to severe impairment of upper limb motor function. Neurofeedback was provided from the supplementary motor area (SMA) targeting two different neurofeedback target levels (low and high). We hypothesized that MCA stroke survivors will show (1) sustained SMA-region of interest (ROI) activation and (2) a difference in SMA-ROI activation between low and high neurofeedback conditions during graded fMRI-NF training. At the group level, we found only anecdotal evidence for these preregistered hypotheses. At the individual level, we found anecdotal to moderate evidence for the absence of the hypothesized graded effect for most subjects. These null findings are relevant for future attempts to employ fMRI-NF training in stroke survivors. The study introduces a Bayesian sequential sampling plan, which incorporates prior knowledge, yielding higher sensitivity. The sampling plan was preregistered together with a priori hypotheses and all planned analysis before data collection to address potential publication/researcher biases. Unforeseen difficulties in the translation of our paradigm to a clinical setting required some deviations from the preregistered protocol. We explicitly detail these changes, discuss the accompanied additional challenges that can arise in clinical neurofeedback studies, and formulate recommendations for how these can be addressed. Taken together, this work provides new insights about the feasibility of motor imagery-based graded fMRI-NF training in MCA stroke survivors and serves as a first example for comprehensive study preregistration of an (fMRI) neurofeedback experiment.

15.
Transl Psychiatry ; 10(1): 172, 2020 05 29.
Article En | MEDLINE | ID: mdl-32472038

A key objective in the field of translational psychiatry over the past few decades has been to identify the brain correlates of major depressive disorder (MDD). Identifying measurable indicators of brain processes associated with MDD could facilitate the detection of individuals at risk, and the development of novel treatments, the monitoring of treatment effects, and predicting who might benefit most from treatments that target specific brain mechanisms. However, despite intensive neuroimaging research towards this effort, underpowered studies and a lack of reproducible findings have hindered progress. Here, we discuss the work of the ENIGMA Major Depressive Disorder (MDD) Consortium, which was established to address issues of poor replication, unreliable results, and overestimation of effect sizes in previous studies. The ENIGMA MDD Consortium currently includes data from 45 MDD study cohorts from 14 countries across six continents. The primary aim of ENIGMA MDD is to identify structural and functional brain alterations associated with MDD that can be reliably detected and replicated across cohorts worldwide. A secondary goal is to investigate how demographic, genetic, clinical, psychological, and environmental factors affect these associations. In this review, we summarize findings of the ENIGMA MDD disease working group to date and discuss future directions. We also highlight the challenges and benefits of large-scale data sharing for mental health research.


Depressive Disorder, Major , Brain/diagnostic imaging , Depression , Depressive Disorder, Major/diagnostic imaging , Humans , Information Dissemination , Neuroimaging
17.
Brain ; 143(6): 1674-1685, 2020 06 01.
Article En | MEDLINE | ID: mdl-32176800

Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.


Checklist/methods , Neurofeedback/methods , Adult , Consensus , Female , Humans , Male , Middle Aged , Peer Review, Research , Research Design/standards , Stakeholder Participation
18.
PLoS Biol ; 17(12): e3000587, 2019 Dec.
Article En | MEDLINE | ID: mdl-31809497

[This corrects the article DOI: 10.1371/journal.pbio.3000246.].

19.
PLoS Biol ; 17(5): e3000246, 2019 05.
Article En | MEDLINE | ID: mdl-31042704

The movement towards open science is a consequence of seemingly pervasive failures to replicate previous research. This transition comes with great benefits but also significant challenges that are likely to affect those who carry out the research, usually early career researchers (ECRs). Here, we describe key benefits, including reputational gains, increased chances of publication, and a broader increase in the reliability of research. The increased chances of publication are supported by exploratory analyses indicating null findings are substantially more likely to be published via open registered reports in comparison to more conventional methods. These benefits are balanced by challenges that we have encountered and that involve increased costs in terms of flexibility, time, and issues with the current incentive structure, all of which seem to affect ECRs acutely. Although there are major obstacles to the early adoption of open science, overall open science practices should benefit both the ECR and improve the quality of research. We review 3 benefits and 3 challenges and provide suggestions from the perspective of ECRs for moving towards open science practices, which we believe scientists and institutions at all levels would do well to consider.


Career Choice , Science , Biomedical Research
20.
Neuroimage ; 184: 36-44, 2019 01 01.
Article En | MEDLINE | ID: mdl-30205210

There is increasing interest in exploring the use of functional MRI neurofeedback (fMRI-NF) as a therapeutic technique for a range of neurological conditions such as stroke and Parkinson's disease (PD). One main therapeutic potential of fMRI-NF is to enhance volitional control of damaged or dysfunctional neural nodes and networks via a closed-loop feedback model using mental imagery as the catalyst of self-regulation. The choice of target node/network and direction of regulation (increase or decrease activity) are central design considerations in fMRI-NF studies. Whilst it remains unclear whether the primary motor cortex (M1) can be activated during motor imagery, the supplementary motor area (SMA) has been robustly activated during motor imagery. Such differences in the regulation potential between primary and supplementary motor cortex are important because these areas can be differentially affected by a stroke or PD, and the choice of fMRI-NF target and grade of self-regulation of activity likely have substantial influence on the clinical effects and cost effectiveness of NF-based interventions. In this study we therefore investigated firstly whether healthy subjects would be able to achieve self-regulation of the hand-representation areas of M1 and the SMA using fMRI-NF training. There was a significant decrease in M1 neural activity during fMRI-NF, whereas SMA neural activity was increased, albeit not with the predicated graded effect. This study has important implications for fMRI-NF protocols that employ motor imagery to modulate activity in specific target regions of the brain and to determine how they may be tailored for neurorehabilitation.


Imagination , Magnetic Resonance Imaging , Motor Cortex/physiology , Neurofeedback , Adult , Brain Mapping , Female , Humans , Kinesthesis , Male , Self-Control , Young Adult
...