Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecology ; 105(5): e4301, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38571283

RESUMEN

Benthic invertebrates are important trophic links in food webs and useful bioindicators of environmental conditions, but long-term benthic organism abundance data across broad geographic areas are rare and historic datasets are often not readily accessible. This dataset provides densities of benthic macroinvertebrates collected from 1930 to 2019 during surveys in Lake Erie, a Laurentian Great Lake. The surveys were funded by the governments of the United States and Canada to investigate the status and changes in the benthic community. From the total of 21 lake-wide and basin-wide benthic surveys conducted in Lake Erie from 1929 to 2019, we were able to acquire data for 17 surveys, including species-level data for 10 surveys and data by higher taxonomic groups for seven surveys. Our amassed Lake Erie dataset includes data from 11 surveys (including five with species-level data) conducted in the western basin in 1930-2019, seven surveys (six with species-level data) in the central basin, and eight surveys (seven with species-level data) in the eastern basin (1973-2019). This Lake Erie dataset represents the most extensive temporal dataset of benthic invertebrates available for any of the Laurentian Great Lakes. Benthic samples were collected using Ponar or Shipek bottom dredges and taxa densities were calculated as individuals per square meter using the area of the dredge. Density data are provided for taxa in the Annelida, Arthropoda, Mollusca, Cnidaria, Nemertea, and Platyhelminthes phyla. Current taxonomy was used for most groups but, in a few cases, older taxonomic names were used for consistency with historical data. Analysis of this dataset indicates that eutrophication, water quality improvement, and dreissenid introduction were the major drivers of changes in the benthic community in the western basin, while hypoxia was a major factor in the central basin, and dreissenid introduction was the most important driver in the eastern basin. Considering the rarity of high taxonomic resolution long-term benthic data for lake ecosystems, this dataset could be useful to explore broader aspects of ecological theory, including effects of eutrophication, hypoxia, invasive species, and other factors on community organization, phylogenetic and functional diversity, and spatial and temporal scales of variation in community structure. In addition, the dataset could be useful for studies on individual species, including abundance and distribution, species co-occurrence, and how the patterns of dominance and rarity change over space and time. Use of this dataset for academic or educational purposes is encouraged as long as this data paper is properly cited.


Asunto(s)
Invertebrados , Lagos , Animales , Invertebrados/fisiología , Invertebrados/clasificación , Biodiversidad , Densidad de Población , Factores de Tiempo , Monitoreo del Ambiente
2.
J Great Lakes Res ; 48(2): 274-288, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36092777

RESUMEN

The Laurentian Great Lakes have experienced multiple anthropogenic changes in the past century, including cultural eutrophication, phosphorus abatement initiatives, and the introduction of invasive species. Lake Ontario, the most downstream lake in the system, is considered to be among the most impaired. The benthos of Lake Ontario has been studied intensively in the last six decades and can provide insights into the impact of environmental changes over time. We used multivariate community analyses to examine temporal changes in community composition over the last 54 years, and to assess the major drivers of long-term changes in benthos. The benthic community of Lake Ontario underwent significant transformations that correspond with three major periods. The first period, termed the pre/early Dreissena period (1964-1990), was characterized by high densities of Diporeia, Sphaeriidae, and Tubificidae. During the next period defined by zebra mussel dominance (the 1990s) the same groups were still prevalent, but at altered densities. In the most recent period (2000s to present), which is characterized by the dominance and proliferation of quagga mussels deeper into the lake, the community has changed dramatically: Diporeia almost completely disappeared, Sphaeriidae have greatly declined, and densities of quagga mussels, Oligochaeta and Chironomidae have increased. The introduction of invasive dreissenids has changed the Lake Ontario benthic community, historically dominated by Diporeia, Oligochaeta and Sphaeriidae, to a community dominated by quagga mussels and Oligochaeta. Dreissenids, especially the quagga mussel, were the major drivers of these changes over the last half century.

3.
J Great Lakes Res ; 48(2): 264-273, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35958892

RESUMEN

We examined three decades of changes in dreissenid populations in Lake Ontario and predation by round goby (Neogobius melanostomus). Dreissenids (almost exclusively quagga mussels, Dreissena rostriformis bugensis) peaked in 2003, 13 years after arrival, and then declined at depths <90 m but continued to increase deeper through 2018. Lake-wide density also increased from 2008 to 2018 along with average mussel lengths and lake-wide biomass, which reached an all-time high in 2018 (25.2 ± 3.3 g AFTDW/m2). Round goby densities were estimated at 4.2 fish/m2 using videography at 10 to 35 m depth range in 2018. This density should impact mussel populations based on feeding rates, as indicated in the literature. While the abundance of 0-5 mm mussels appears to be high in all three years with measured length distributions (2008, 2013, 2018), the abundance of 5 to 12 mm dreissenids, the size range most commonly consumed by round goby, was low except at >90 m depths. Although the size distributions indicate that round goby is affecting mussel recruitment, we did not find a decline in dreissenid density in the nearshore and mid-depth ranges where goby have been abundant since 2005. The lake-wide densities and biomass of quagga mussels have increased over time, due to both the growth of individual mussels in the shallower depths, and a continuing increase in density at >90 m. Thus, the ecological effects of quagga mussels in Lake Ontario are likely to continue into the foreseeable future.

4.
Ecology ; 102(12): e03528, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34469591

RESUMEN

Benthic invertebrates are important trophic links in aquatic food webs and serve as useful bioindicators of environmental conditions because their responses integrate the effects of both water and sediment qualities. However, long-term data sets for benthic invertebrate assemblages across broad geographic areas are rare and, even if collected, historic data sets are often not readily accessible. This data set provides densities of benthic macroinvertebrates for all taxa collected during lake-wide surveys in Lake Ontario, a Laurentian Great Lake, from 1964 to 2018. This information resulted from surveys funded by the governments of the United States and Canada to investigate the status and changes of Lake Ontario benthic community. Of the 13 lake-wide benthic surveys conducted in Lake Ontario over the course of 54 yr, we were able to acquire taxonomic data to the species level for 11 of the surveys and data to the group level for the other two surveys. Density data are provided for taxa representing the Annelida, Arthropoda, Mollusca, Cnidaria, Nemertea, and Platyhelminthes phyla. Univariate and multivariate analyses revealed that the compositional structure of Lake Ontario invertebrate assemblages differed markedly by depth and were also significantly altered by the Dreissena spp. invasion in early 1990s. The introduction of invasive dreissenids has changed the community historically dominated by Diporeia, Oligochaeta, and Sphaeriidae, to a community dominated by quagga mussels and Oligochaeta. Considering the rarity of long-term benthic data of high taxonomic resolution in lake ecosystems, this data set could be useful to explore broader aspects of ecological theory, including effects of different environmental factors and invasive species on community organization, functional and phylogenetic diversity, and spatial scale of variation in community structure. The data set could also be useful for studies on individual species including abundance and distribution, species co-occurrence, and how the patterns of dominance and rarity change over space and time. Use of this data set for academic or educational purposes is encouraged as long as the data source is properly cited using the title of this Data Paper, the names of the authors, the year of publication, the journal name, and the article number.


Asunto(s)
Ecosistema , Lagos , Animales , Invertebrados , Ontario , Filogenia
5.
Hydrobiologia ; 848: 2421-2436, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961048

RESUMEN

Dreissenid bivalves (Dreissena polymorpha and D. rostriformis bugensis) are considered the most aggressive freshwater invaders inflicting profound ecological and economic impacts on the waterbodies that they colonize. Severity of these impacts depends on dreissenid population sizes which vary dramatically across space and time. We developed a novel method that analyzes video recorded using a Benthic Imaging System (BIS) in near real-time to assess dreissenid distribution and density across large waterbodies and tested it on Lake Erie. Lake Erie basins differ dramatically in morphometry, turbidity, and productivity, as well as in Dreissena distribution, density, and length-frequency distribution, providing an excellent model to test the applicability of our method across large and dynamic environmental gradients. Results of rapid assessment were subsequently compared with dreissenid density obtained from Ponar grab samples collected at the same sites. In the eastern and central basins, the differences in basin-wide density estimations from BIS and Ponar were 3% and 23%, respectively. In the western basin, this method had limited application due to high turbidity and abundance of small (< 10 mm length) mussels. By substantially reducing the time required to assess dreissenids across large areas, rapid assessment could be a useful and cost-effective addition for monitoring their populations.

6.
J Great Lakes Res ; 44(4): 650-659, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30505066

RESUMEN

It is well documented that the introduction of dreissenid bivalves in eutrophic lakes is usually associated with decreases in turbidity and total phosphorus concentrations in the water column, concomitant increases in water clarity, as well as other physical changes to habitat that may have cascading effects on other species in the invaded waterbody. In contrast, there is a paucity of data on the ecological ramifications of the elimination or decline of dreissenids due to pollution, bottom hypoxia, or other mechanisms. Using data collected by the U.S. Environmental Protection Agency Great Lakes National Program Office's Long-Term Biology and Water Quality Monitoring Programs, we analyzed the impacts of the hypoxia-induced declines in Dreissena densities in the central basin of Lake Erie on major water chemistry and physical parameters. Our analysis revealed that the decline in Dreissena density in the central basin was concomitant with a decrease in spring dissolved silica concentrations and an increase in total phosphorus and near bottom turbidity not seen in the western or eastern basins. In contrast, opposite patterns in water quality were observed in the eastern basin, which was characterized by a high and relatively stable Dreissena population. We are the first to report that dreissenid-related shifts in water quality of invaded waterbodies are reversible by documenting that the sharp decline of Dreissena in the central basin of Lake Erie was concomitant with a shift from clear to turbid water.

7.
J Great Lakes Res ; 44(4): 639-649, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30713364

RESUMEN

Due to cultural eutrophication and global climate change, an exponential increase in the number and extent of hypoxic zones in marine and freshwater ecosystems has been observed in the last few decades. Hypoxia, or low dissolved oxygen (DO) concentrations, can produce strong negative ecological impacts and, therefore, is a management concern. We measured biomass and densities of Dreissena in Lake Erie, as well as bottom DO in 2014 using 19 high frequency data loggers distributed throughout the central basin to validate a three-dimensional hydrodynamic-ecological lake model. We found that a deep, offshore hypoxic zone was formed by early August, restricting the Dreissena population to shallow areas of the central basin. Deeper than 20 m, where bottom hypoxia routinely develops, only young of the year mussels were found in small numbers, indicating restricted recruitment and survival of young Dreissena. We suggest that monitoring Dreissena distribution can be an effective tool for mapping the extent and frequency of hypoxia in freshwater. In addition, our results suggest that an anticipated decrease in the spatial extent of hypoxia resulting from nutrient management has the potential to increase the spatial extent of profundal habitat in the central basin available for Dreissena expansion.

8.
J Great Lakes Res ; 44(4): 629-638, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31359906

RESUMEN

In contrast to marine systems where remote sensing methods in studies of benthic organisms have been widely used for decades, these methods have experienced limited use in studies of freshwater benthos due to the general lack of large epifauna. The situation has changed with the introduction of dreissenid bivalves capable of creating visible aggregations on lake bottoms into North American freshwaters in the 1980s and 1990s. The need for assessment of Dreissena densities prompted exploration of videography as a potentially cost-effective tool. We developed a novel sampling method that analyzes video recorded using a GoPro camera mounted to a benthic sled to estimate Dreissena coverage, density, and biomass over relatively large areas of the lake bed in the Laurentian Great Lakes compared to traditional sampling methods. Using this method, we compared quagga mussel coverage, density, and biomass estimates based on three replicate Ponar grabs vs. 500 m-long video transects across 43 stations sampled in Lake Michigan in 2015. Our results showed that analysis of images from video transects dramatically increased the bottom area surveyed compared to Ponar grabs and increased the precision of Dreissena density and biomass estimations at monitoring stations. By substantially increasing the ability to detect relatively small (<20%) changes between years within a particular station, this method could be a useful and cost-effective addition for monitoring Dreissena populations in the Great Lakes and other freshwater systems where they occur.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA