Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 7(1): 21, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28401459

RESUMEN

Semecarpus anacardium L. is a tree species which produces secondary metabolites of medicinal importance. Roots of the plant have been traditionally used in folk medicines. Different strains of Agrobacterium rhizogenes (A4, ATCC15834 and LBA 9402) were used for induction of hairy roots in in vitro grown tissues of the plant. Hairy root initiation was observed after 25-30 days of infection. Optimum transformation frequency of 61% was achieved on leaf explants with ATCC15834 strain. Infection time of 30 min resulted in greater transformation frequency compared to 10 and 20 min, respectively. The hairy roots cultured in growth regulator-free semi-solid woody plant medium differentiated into callus. Whole shoots infected with ATCC 15834 were found to produce more transformants upon co-cultivation for 4 (65%) and 5 (67%) days. Induction of hairy roots in stem explants infected with ATCC 15834 was lower (52%) compared to leaves (62%) after 4 days of co-cultivation. In A4 and LBA9402 strains transformation efficiency was 49 ± 2.8% and 36 ± 5.7% in shoots after 4 days of co-cultivation. Transformation frequency was higher in ATCC15834 strain, irrespective of explants. The hairy roots of S. anacardium elongated slowly upon transfer to half-strength liquid medium. After 3-4 passages in liquid medium slender hairy roots started differentiating which were separated from the original explants. Visible growth of the roots was observed in hormone-free liquid medium after 2-3 months of culturing. Polymerase chain reaction with gene-specific primers from rol A, B and C genes confirms the positive transformation events.

2.
IET Nanobiotechnol ; 10(3): 141-6, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27256894

RESUMEN

An eco-friendly green and one-pot synthesis of highly monodispersed iron (Fe) nanoparticles (NPs) by using a natural biopolymer, gum kondagogu (GK) as reducing and capping agent is proposed. The NPs synthesised were characterised by ultra-violet-visible spectroscopy, transmission electron microscopy, scanning electron microscopy and X-ray diffraction. As the concentration of gum and time increases, the intensity of NPs formation increased. The NPs were highly monodispersed with uniform circular shapes of 2-6 nm in size. The formed NPs were crystalline in nature which was confirmed by diffraction analysis. The conversion ratio of Fe ionic form to NPs was 21% which was quantified by inductively coupled plasma mass spectroscopy (ICP-MS). Fe is essential for plant growth and development. A study was conducted to examine the effect of these NPs on the growth of mung bean (Vigna radiata). The radical length and biomass was increased in seeds exposed to Fe NPs than the ions. The uptake of Fe NPs by the sprouts was also quantified by ICP-MS, in which Fe was more in mung bean seeds exposed to NPs. The α-amylase activity was increased in the seeds exposed to NPs. The observed increase in the biomass by Fe NPs and seed germination may facilitate its application in the agriculture as an important cost-effective method for plant growth.


Asunto(s)
Bixaceae/química , Hierro/química , Nanocompuestos/química , Gomas de Plantas/química , Gomas de Plantas/farmacología , Fabaceae/efectos de los fármacos , Germinación/efectos de los fármacos , Tecnología Química Verde , Hierro/farmacología , Modelos Biológicos , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , alfa-Amilasas/análisis , alfa-Amilasas/metabolismo
3.
J Nanosci Nanotechnol ; 15(2): 1575-81, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26353693

RESUMEN

Fabrication of inorganic nanomaterials via a biological route witnesses the formation either extracellularly, intracellulary or both. Whereas extracellular formation of these nanomaterials is cherished owing to their easy and economical extraction and purification processes; the intracellular formation of nanomaterials, due to the lack of a proper recovery protocol has always been dreaded, as the extraction processes used so far were tedious, costly, time consuming and often resulting in very low recovery. The aim of the present study was to overcome the problems related with the extraction and recovery of intracellularly synthesized inorganic nanoparticles, and to devise a method to increasing the output, the shape, size, composition and dispersal of nanoparticles is not altered. Water proved to be much better system as it provided well dispersed, stable gold nanoparticles and higher recovery. This is the first report, where intracellular nanoparticles have been recovered using a very cost-effective and eco-friendly approach.


Asunto(s)
Arachis/química , Oro/aislamiento & purificación , Nanopartículas del Metal/análisis , Raíces de Plantas/química , Plantones/química , Fracciones Subcelulares/química , Fraccionamiento Químico/métodos , Oro/química , Ensayo de Materiales , Tamaño de la Partícula , Sonicación/métodos , Propiedades de Superficie
4.
Biotechnol Appl Biochem ; 59(6): 471-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23586957

RESUMEN

Inorganic nanomaterials of different chemical compositions are conventionally synthesized under harsh environments such as extremes of temperature, pressure, and pH. Moreover, these methods are eco-unfriendly and cumbersome, yield bigger particles, and agglomerate because of not being capped by capping agents. In contrast, biological synthesis of inorganic nanomaterials occurs under ambient conditions, namely room temperature, atmospheric pressure, and physiological pH. These methods are reliable, eco-friendly, and cheap. In this paper, we report for the first time the extracellular and intracellular synthesis of gold nanoparticles (GNPs) using living peanut seedlings. The formed GNPs were highly stable in solution and inside the plant tissue. Transmission electron microscopy revealed that extracellular GNPs distributions were in the form of monodispersed nanoparticles. The nanoparticles ranged from 4 to 6 nm in size. The intercellular nanoparticles were of oval shape and size ranged from 5 to 50 nm. Both extracellular and intracellular nanoparticles were further characterized by standard techniques. The formed GNPs inside the plant tissue were estimated by inductively coupled plasma spectrometry. This opens up an exciting possibility of a plant-based nanoparticle synthesis strategy, wherein the nanoparticles may be entrapped in the biomass in the form of a film or produced in the solution, both of which have interesting applications.


Asunto(s)
Arachis/metabolismo , Espacio Extracelular/metabolismo , Oro/metabolismo , Espacio Intracelular/metabolismo , Nanopartículas del Metal , Nanotecnología/métodos , Fotosíntesis , Arachis/citología , Oro/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...