Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genet Mol Biol ; 38(2): 162-72, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26273219

RESUMEN

Many phylogenetic questions in the Ciconiiformes remain unresolved and complete mitogenome data are urgently needed for further molecular investigation. In this work, we determined the complete mitogenome sequence of the little egret (Egretta garzetta). The genome was 17,361 bp in length and the gene organization was typical of other avian mtDNA. In protein-coding genes (PCGs), a C insertion was found in ND3, and COIII and ND4 terminated with incomplete stop codons (T). tRNA-Val and tRNA-Ser (AGY) were unable to fold into canonical cloverleaf secondary structures because they had lost the DHU arms. Long repetitive sequences consisting of five types of tandem repeats were found at the 3' end of Domain III in the control region. A phylogenetic analysis of 11 species of Ciconiiformes was done using complete mitogenome data and 12 PCGs. The tree topologies obtained with these two strategies were identical, which strongly confirmed the monophyly of Ardeidae, Threskiorothidae and Ciconiidae. The phylogenetic analysis also revealed that Egretta was more closely related to Ardea than to Nycticorax in the Ardeidae, and Platalea was more closely related to Threskiornis than to Nipponia in the Threskiornithidae. These findings contribute to our understanding of the phylogenetic relationships of Ciconiiformes based on complete mitogenome data.

2.
Genet Mol Biol ; 35(2): 545-52, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22888306

RESUMEN

The phylogenetic relationships of primates have been extensively investigated, but key issues remain unresolved. Complete mitochondrial genome (mitogenome) data have many advantages in phylogenetic analyses, but such data are available for only 46 primate species. In this work, we determined the complete mitogenome sequence of the black-capped capuchin (Cebus apella). The genome was 16,538 bp in size and consisted of 13 protein-coding genes, 22 tRNAs, two rRNAs and a control region. The genome organization, nucleotide composition and codon usage did not differ significantly from those of other primates. The control region contained several distinct repeat motifs, including a putative termination-associated sequence (TAS) and several conserved sequence blocks (CSB-F, E, D, C, B and 1). Among the protein-coding genes, the COII gene had lower nonsynonymous and synonymous substitutions rates while the ATP8 and ND4 genes had higher rates. A phylogenetic analysis using Maximum likelihood and Bayesian methods and the complete mitogenome data for platyrrhine species confirmed the basal position of the Callicebinae and the sister relationship between Atelinae and Cebidae, as well as the sister relationship between Aotinae (Aotus) and Cebinae (Cebus/Saimiri) in Cebidae. These conclusions agreed with the most recent molecular phylogenetic investigations on primates. This work provides a framework for the use of complete mitogenome information in phylogenetic analyses of the Platyrrhini and primates in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA