Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 795
1.
World J Gastroenterol ; 30(19): 2575-2602, 2024 May 21.
Article En | MEDLINE | ID: mdl-38817665

BACKGROUND: Lactate, previously considered a metabolic byproduct, is pivotal in cancer progression and maintaining the immunosuppressive tumor microenvironment. Further investigations confirmed that lactate is a primary regulator, introducing recently described post-translational modifications of histone and non-histone proteins, termed lysine lactylation. Pancreatic adenocarcinomas are characterized by increased glycolysis and lactate accumulation. However, our understanding of lactylation-related genes in pancreatic adenocarcinomas remains limited. AIM: To construct a novel lactylation-related gene signature to predict the survival of patients with pancreatic cancer. METHODS: RNA-seq and clinical data of pancreatic adenocarcinoma (PDAC) were obtained from the GTEx (Genotype-Tissue Expression) and TCGA (The Cancer Genome Atlas) databases via Xena Explorer, and GSE62452 datasets from GEO. Data on lactylation-related genes were obtained from publicly available sources. Differential expressed genes (DEGs) were acquired by using R package "DESeq2" in R. Univariate COX regression analysis, LASSO Cox and multivariate Cox regressions were produced to construct the lactylation-related prognostic model. Further analyses, including functional enrichment, ESTIMATE, and CIBERSORT, were performed to analyze immune status and treatment responses in patients with pancreatic cancer. PDAC and normal human cell lines were subjected to western blot analysis under lactic acid intervention; two PDAC cell lines with the most pronounced lactylation were selected. Subsequently, RT-PCR was employed to assess the expression of LRGs genes; SLC16A1, which showed the highest expression, was selected for further investigation. SLC16A1-mediated lactylation was analyzed by immunofluorescence, lactate production analysis, colony formation, transwell, and wound healing assays to investigate its role in promoting the proliferation and migration of PDAC cells. In vivo validation was performed using an established tumor model. RESULTS: In this study, we successfully identified 10 differentially expressed lactylation-related genes (LRGs) with prognostic value. Subsequently, a lactylation-related signature was developed based on five OS-related lactylation-related genes (SLC16A1, HLA-DRB1, KCNN4, KIF23, and HPDL) using Lasso Cox hazard regression analysis. Subsequently, we evaluated the clinical significance of the lactylation-related genes in pancreatic adenocarcinoma. A comprehensive examination of infiltrating immune cells and tumor mutation burden was conducted across different subgroups. Furthermore, we demonstrated that SLC16A1 modulates lactylation in pancreatic cancer cells through lactate transport. Both in vivo and in vitro experiments showed that decreasing SLC16A1 Level and its lactylation significantly inhibited tumor progression, indicating the potential of targeting the SLC16A1/Lactylation-associated signaling pathway as a therapeutic strategy against pancreatic adenocarcinoma. CONCLUSION: We constructed a novel lactylation-related prognostic signature to predict OS, immune status, and treatment response of patients with pancreatic adenocarcinoma, providing new strategic directions and antitumor immunotherapies.


Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Prognosis , Cell Line, Tumor , Tumor Microenvironment/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Protein Processing, Post-Translational , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Lactic Acid/metabolism , Symporters/genetics , Symporters/metabolism , Cell Proliferation/genetics , Gene Expression Profiling , Male , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , Female , Animals , Transcriptome
2.
Exp Neurol ; : 114825, 2024 May 20.
Article En | MEDLINE | ID: mdl-38777251

Alzheimer's disease (AD) is a devastating neurodegenerative disorder that leads to progressive cognitive decline and neuropathological changes. Pericytes, which are vessel mural cells on the basement membrane of capillaries, play a crucial role in regulating cerebrovascular functions and maintaining neurovascular unit integrity. Emerging research substantiates the involvement of pericytes in AD. This review provides a comprehensive overview of pericytes, including their structure, origin, and markers and various functions within the central nervous system. Emphatically, the review explores the intricate mechanisms through which pericytes contribute to AD, including their interactions with amyloid beta and apolipoprotein E, as well as various signaling pathways. The review also highlights potential for targeted pericyte therapy for AD, with a focus on stem cell therapy and drug treatments. Future research directions include the classification of pericyte subtypes, studies related to aging, and the role of pericytes in exosome-related mechanisms in AD pathology. In conclusion, this review consolidates current knowledge on the pivotal roles of pericytes in AD and their potential as therapeutic targets, providing valuable insights for future research and clinical interventions aimed at addressing the impact of AD on patients' lives.

3.
BMC Pregnancy Childbirth ; 24(1): 375, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760653

BACKGROUND: Limited evidence exists regarding the association between gestational diabetes mellitus (GDM) and elevated levels of thyroid-stimulating hormone (TSH) in newborns. Therefore, this study aimed to investigate the potential risk of elevated TSH levels in infants exposed to maternal GDM, considering the type and number of abnormal values obtained from the 75-gram oral glucose tolerance test (OGTT). METHODS: A population-based, prospective birth cohort study was conducted in Wuhan, China. The study included women who underwent GDM screening using a 75-g OGTT. Neonatal TSH levels were measured via a time-resolved immunofluorescence assay. We estimated and stratified the overall risk (adjusted Risk Ratio [RR]) of elevated TSH levels (defined as TSH > 10 mIU/L or > 20 mIU/L) in offspring based on the type and number of abnormal OGTT values. RESULTS: Out of 15,236 eligible mother-offspring pairs, 11.5% (1,753) of mothers were diagnosed with GDM. Offspring born to women diagnosed with GDM demonstrated a statistically significant elevation in TSH levels when compared to offspring of non-GDM mothers, with a mean difference of 0.20 [95% CI: 0.04-0.36]. The incidence of elevated TSH levels (TSH > 10 mIU/L) in offspring of non-GDM women was 6.3 per 1,000 live births. Newborns exposed to mothers with three abnormal OGTT values displayed an almost five-fold increased risk of elevated TSH levels (adjusted RR 4.77 [95% CI 1.64-13.96]). Maternal fasting blood glucose was independently and positively correlated with neonatal TSH levels and elevated TSH status (TSH > 20 mIU/L). CONCLUSIONS: For newborns of women with GDM, personalized risk assessment for elevated TSH levels can be predicated on the type and number of abnormal OGTT values. Furthermore, fasting blood glucose emerges as a critical predictive marker for elevated neonatal TSH status.


Diabetes, Gestational , Glucose Tolerance Test , Thyrotropin , Humans , Female , Thyrotropin/blood , Pregnancy , Diabetes, Gestational/blood , Infant, Newborn , Adult , China/epidemiology , Prospective Studies , Birth Cohort , Male , Cohort Studies
4.
Environ Res ; 252(Pt 3): 119067, 2024 May 03.
Article En | MEDLINE | ID: mdl-38704002

Environmentally persistent free radicals (EPFRs) can pose exposure risks by inducing the generation of reactive oxygen species. As a new class of pollutants, EPFRs have been frequently detected in atmospheric particulate matters. In this study, the seasonal variations and sources of EPFRs in a severe cold region in Northeastern China were comprehensively investigated, especially for the high pollution events. The geomean concentration of EPFRs in the total suspended particle was 6.58 × 1013 spins/m3 and the mean level in winter was one order of magnitude higher than summer and autumn. The correlation network analysis showed that EPFRs had significantly positive correlation with carbon component, K+ and PAHs, indicating that EPFRs were primarily emitted from combustion and pyrolysis process. The source appointment by the Positive Matrix Factorization (PMF) model indicated that the dominant sources in the heating season were coal combustion (48.4%), vehicle emission (23.1%) and biomass burning (19.4%), while the top three sources in the non-heating season were others (41.4%), coal combustion (23.7%) and vehicle emissions (21.2%). It was found that the high EPFRs in cold season can be ascribed to the extensive use of fossil fuel for heating demand; while the high EPFRs occurred in early spring were caused by the large-scale opening combustion of biomass. In summary, this study provided important basic information for better understanding the pollution characteristics of EPFRs, which suggested that the implementation of energy transformation and straw utilization was benefit for the control of EPFRs in severe cold region.

5.
Int J Biol Macromol ; 269(Pt 2): 132216, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729483

Agricultural by-products of sesame are promising bioresources in food processing. This study extracted lignin from the by-products of sesame oil production, namely, the capsules and straw of black and white sesame. Using acid, alkali, and ethanol methods, 12 distinct lignins were obtained to prepare biochar, aiming to investigate both the structural characteristics of lignin-based biochar (LBB) and its ability to remove benzo[a]pyrene (BaP) from sesame oil. The results showed that white sesame straw was the most suitable raw material for preparing biochar. In terms of the preparation method, acid-extracted lignin biochar was more effective in removing BaP than alkaline or ethanol methods. Notably, WS-1LB (white sesame straw acid-extracted lignin biochar) exhibited the highest BaP adsorption efficiency (91.44 %) and the maximum specific surface area (1065.8187 m2/g), characterized by porous structures. The pseudo 2nd and Freundlich models were found to be the best fit for the adsorption kinetics and isotherms of BaP on LBB, respectively, suggesting that a multilayer adsorption process was dominant. The high adsorption of LBB mainly resulted from pore filling. This study provides an economical and highly efficient biochar adsorbent for the removal of BaP in oil.


Charcoal , Lignin , Sesame Oil , Lignin/chemistry , Charcoal/chemistry , Adsorption , Sesame Oil/chemistry , Benzo(a)pyrene/chemistry , Kinetics
6.
Stem Cell Res Ther ; 15(1): 102, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589967

BACKGROUND: Premature ovarian insufficiency (POI) is a major cause of infertility. In this study, we aimed to investigate the effects of the combination of bone marrow mesenchymal stem cells (BMSCs) and moxibustion (BMSCs-MOX) on POI and evaluate the underlying mechanisms. METHODS: A POI rat model was established by injecting different doses of cyclophosphamide (Cy). The modeling of POI and the effects of the treatments were assessed by evaluating estrous cycle, serum hormone levels, ovarian weight, ovarian index, and ovarian histopathological analysis. The effects of moxibustion on BMSCs migration were evaluated by tracking DiR-labeled BMSCs and analyzing the expression of chemokines stromal cell-derived factor 1 (Sdf1) and chemokine receptor type 4 (Cxcr4). Mitochondrial function and mitophagy were assessed by measuring the levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), ATP, and the mitophagy markers (Drp1, Pink1, and Parkin). Furthermore, the mitophagy inhibitor Mdivi-1 and the mitophagy activator CCCP were used to confirm the role of mitophagy in Cy-induced ovarian injury and the underlying mechanism of combination therapy. RESULTS: A suitable rat model of POI was established using Cy injection. Compared to moxibustion or BMSCs transplantation alone, BMSCs-MOX showed improved outcomes, such as reduced estrous cycle disorders, improved ovarian weight and index, normalized serum hormone levels, increased ovarian reserve, and reduced follicle atresia. Moxibustion enhanced Sdf1 and Cxcr4 expression, promoting BMSCs migration. BMSCs-MOX reduced ROS levels; upregulated MMP and ATP levels in ovarian granulosa cells (GCs); and downregulated Drp1, Pink1, and Parkin expression in ovarian tissues. Mdivi-1 significantly mitigated mitochondrial dysfunction in ovarian GCs and improved ovarian function. CCCP inhibited the ability of BMSCs-MOX treatment to regulate mitophagy and ameliorate Cy-induced ovarian injury. CONCLUSIONS: Moxibustion enhanced the migration and homing of BMSCs following transplantation and improves their ability to repair ovarian damage. The combination of BMSCs and moxibustion effectively reduced the excessive activation of mitophagy, which helped prevent mitochondrial damage, ultimately improving ovarian function. These findings provide a novel approach for the treatment of pathological ovarian aging and offer new insights into enhancing the efficacy of stem cell therapy for POI patients.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Moxibustion , Primary Ovarian Insufficiency , Humans , Female , Rats , Animals , Mitophagy , Reactive Oxygen Species/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/adverse effects , Carbonyl Cyanide m-Chlorophenyl Hydrazone/metabolism , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/pathology , Cyclophosphamide/adverse effects , Mesenchymal Stem Cells/metabolism , Mitochondria/metabolism , Ubiquitin-Protein Ligases/metabolism , Protein Kinases/metabolism , Hormones/adverse effects , Hormones/metabolism , Adenosine Triphosphate/metabolism
7.
Talanta ; 274: 126004, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38564824

Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) serve as vital mediators essential for preserving intracellular redox homeostasis within the human body, thereby possessing significant implications across physiological and pathological domains. Nevertheless, deviations from normal levels of ROS, RNS, and RSS disturb redox homeostasis, leading to detrimental consequences that compromise bodily integrity. This disruption is closely linked to the onset of various human diseases, thereby posing a substantial threat to human health and survival. Small-molecule fluorescent probes exhibit considerable potential as analytical instruments for the monitoring of ROS, RNS, and RSS due to their exceptional sensitivity and selectivity, operational simplicity, non-invasiveness, localization capabilities, and ability to facilitate in situ optical signal generation for real-time dynamic analyte monitoring. Due to their distinctive transition from their spirocyclic form (non-fluorescent) to their ring-opened form (fluorescent), along with their exceptional light stability, broad wavelength range, high fluorescence quantum yield, and high extinction coefficient, rhodamine fluorophores have been extensively employed in the development of fluorescent probes. This review primarily concentrates on the investigation of fluorescent probes utilizing rhodamine dyes for ROS, RNS, and RSS detection from the perspective of different response groups since 2016. The scope of this review encompasses the design of probe structures, elucidation of response mechanisms, and exploration of biological applications.


Fluorescent Dyes , Reactive Nitrogen Species , Reactive Oxygen Species , Rhodamines , Fluorescent Dyes/chemistry , Rhodamines/chemistry , Reactive Nitrogen Species/analysis , Humans , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/analysis , Optical Imaging , Animals , Sulfur/chemistry , Sulfur/analysis
8.
Int J Biol Macromol ; 266(Pt 1): 131208, 2024 May.
Article En | MEDLINE | ID: mdl-38552695

In this study, three activators and two activation methods were employed to activate sesame lignin-based biochar. The biochar samples were comprehensively characterized, their abilities to adsorb benzo[a]pyrene (BaP) from sesame oil were assessed, and the mechanism was analyzed. The results showed that the biochar obtained by one-step activation was more effective in removing BaP from sesame oil than the biochar produced by two-step activation. Among them, the biochar generated by one-step activation with ZnCl2 as the activator had the largest specific surface area (1068.8776 m3/g), and the richest mesoporous structure (0.7891 m3/g); it removed 90.53 % of BaP from sesame oil. BaP was mainly adsorbed by the mesopores of biochar. Mechanistically, pore-filling, π-π conjugations, hydrogen bonding, and n-π interactions were involved. The adsorption was spontaneous and heat-absorbing. In conclusion, the preparation of sesame lignin biochar using one-step activation with ZnCl2 as the activator was found to be the best for removing BaP from sesame oil. This biochar may be an economical adsorbent for the industrial removal of BaP from sesame oil.


Benzo(a)pyrene , Charcoal , Lignin , Sesame Oil , Sesamum , Charcoal/chemistry , Lignin/chemistry , Benzo(a)pyrene/chemistry , Adsorption , Sesame Oil/chemistry , Sesamum/chemistry , Zinc Compounds/chemistry , Chlorides/chemistry
9.
Phytomedicine ; 128: 155376, 2024 Jun.
Article En | MEDLINE | ID: mdl-38503152

BACKGROUND: The apoptosis of pulmonary artery endothelial cells (PAECs) is an important factor contributing to the development of pulmonary hypertension (PH), a serious cardio-pulmonary vascular disorder. Salidroside (SAL) is a bioactive compound derived from an herb Rhodiola, but the potential protective effects of SAL on PAECs and the underlying mechanisms remain elusive. PURPOSE: The objective of this study was to determine the role of SAL in the hypoxia-induced apoptosis of PAECs and to dissect the underlying mechanisms. STUDY DESIGN: Male Sprague-Dawley (SD) rats were subjected to hypoxia (10% O2) for 4 weeks to establish a model of PH. Rats were intraperitoneally injected daily with SAL (2, 8, and 32 mg/kg/d) or vehicle. To define the molecular mechanisms of SAL in PAECs, an in vitro model of hypoxic cell injury was also generated by exposed PAECs to 1% O2 for 48 h. METHODS: Various techniques including hematoxylin and eosin (HE) staining, immunofluorescence, flow cytometry, CCK-8, Western blot, qPCR, molecular docking, and surface plasmon resonance (SPR) were used to determine the role of SAL in rats and in PAECs in vitro. RESULTS: Hypoxia stimulation increases AhR nuclear translocation and activates the NF-κB signaling pathway, as evidenced by upregulated expression of CYP1A1, CYP1B1, IL-1ß, and IL-6, resulting in oxidative stress and inflammatory response and ultimately apoptosis of PAECs. SAL inhibited the activation of AhR and NF-κB, while promoted the nuclear translocation of Nrf2 and increased the expression of its downstream antioxidant proteins HO-1 and NQO1 in PAECs, ameliorating the hypoxia-induced oxidative stress in PAECs. Furthermore, SAL lowered right ventricular systolic pressure, and decreased pulmonary vascular remodeling and right ventricular hypertrophy in hypoxia-exposed rats. CONCLUSIONS: SAL may attenuate the apoptosis of PAECs by suppressing NF-κB and activating Nrf2/HO-1 pathways, thereby delaying the progressive pathology of PH.


Apoptosis , Endothelial Cells , Heme Oxygenase (Decyclizing) , Pulmonary Artery , Signal Transduction , Animals , Male , Rats , Apoptosis/drug effects , Endothelial Cells/drug effects , Glucosides/pharmacology , Hypertension, Pulmonary/drug therapy , Hypoxia/drug therapy , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Phenols/pharmacology , Pulmonary Artery/drug effects , Rats, Sprague-Dawley , Receptors, Aryl Hydrocarbon/metabolism , Rhodiola/chemistry , Signal Transduction/drug effects
10.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(1): 33-39, 2024 Jan.
Article Zh | MEDLINE | ID: mdl-38404269

OBJECTIVE: To observe and verify the changes of transcriptome in hyperoxia-induced acute lung injury (HALI), and to further clarify the changes of pathways in HALI. METHODS: Twelve healthy male C57BL/6J mice were randomly divided into normoxia group and HALI group according to the random number table, with 6 mice in each group. The mice in the normoxia group were fed normally in the room, and the mice in the HALI group was exposed to 95% oxygen to reproduce the HALI animal model. After 72 hours of hyperoxia exposure, the lung tissues were taken for transcriptome sequencing, and then Kyoto Encyclopedia of Genes and Genomes database (KEGG) pathway enrichment analysis was performed. The pathological changes of lung tissue were observed under light microscope after hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to verify the key molecules in the signal pathways closely related to HALI identified by transcriptomics analysis. RESULTS: Transcriptomic analysis showed that hyperoxia induced 537 differentially expressed genes in lung tissue of mice as compared with the normoxia group including 239 up-regulated genes and 298 down-regulated genes. Further KEGG pathway enrichment analysis identified 20 most significantly enriched pathway entries, and the top three pathways were ferroptosis signaling pathway, p53 signaling pathway and glutathione (GSH) metabolism signaling pathway. The related genes in the ferroptosis signaling pathway included the up-regulated gene heme oxygenase-1 (HO-1) and the down-regulated gene solute carrier family 7 member 11 (SLC7A11). The related genes in the p53 signaling pathway included the up-regulated gene tumor suppressor gene p53 and the down-regulated gene murine double minute 2 (MDM2). The related gene in the GSH metabolic signaling pathway was up-regulated gene glutaredoxin 1 (Grx1). The light microscope showed that the pulmonary alveolar structure of the normoxia group was normal. In the HALI group, the pulmonary alveolar septum widened and thickened, and the alveolar cavity shrank or disappeared. RT-RCR and Western blotting confirmed that compared with the normoxia group, the mRNA and protein expressions of HO-1 and p53 in lung tissue of the HALI group were significantly increased [HO-1 mRNA (2-ΔΔCt): 2.16±0.17 vs. 1.00±0.00, HO-1 protein (HO-1/ß-actin): 1.05±0.01 vs. 0.79±0.01, p53 mRNA (2-ΔΔCt): 2.52±0.13 vs. 1.00±0.00, p53 protein (p53/ß-actin): 1.12±0.02 vs. 0.58±0.03, all P < 0.05], and the mRNA and protein expressions of Grx1, MDM2, SLC7A11 were significantly decreased [Grx1 mRNA (2-ΔΔCt): 0.53±0.05 vs. 1.00±0.00, Grx1 protein (Grx1/ß-actin): 0.54±0.03 vs. 0.93±0.01, MDM2 mRNA (2-ΔΔCt): 0.48±0.03 vs. 1.00±0.00, MDM2 protein (MDM2/ß-actin): 0.57±0.02 vs. 1.05±0.01, SLC7A11 mRNA (2-ΔΔCt): 0.50±0.06 vs. 1.00±0.00, SLC7A11 protein (SLC7A11/ß-actin): 0.72±0.03 vs. 0.98±0.01, all P < 0.05]. CONCLUSIONS: HALI is closely related to ferroptosis, p53 and GSH metabolism signaling pathways. Targeting the key targets in ferroptosis, p53 and GSH metabolism signaling pathways may be an important strategy for the prevention and treatment of HALI.


Acute Lung Injury , Hyperoxia , Rats , Mice , Male , Animals , Tumor Suppressor Protein p53 , Hyperoxia/complications , Rats, Sprague-Dawley , Actins , Mice, Inbred C57BL , Signal Transduction , Gene Expression Profiling , RNA, Messenger
11.
BMC Public Health ; 24(1): 533, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38378488

BACKGROUND: Previous studies of singletons evaluating prenatal phthalate exposure and early neurodevelopment reported mixed results and the associations could be biased by parental, obstetrical, and genetic factors. METHODS: A co-twin control design was employed to test whether prenatal phthalate exposure was associated with children's neurocognitive development. We collected information from 97 mother-twin pairs enrolled in the Wuhan Twin Birth Cohort between March 2016 and October 2018. Fourteen phthalate metabolites were measured in maternal urine collected at each trimester. Neurodevelopmental differences in twins at the age of two were examined as the outcome of interest. Multiple informant model was used to examine the covariate-adjusted associations of prenatal phthalate exposure with mental development index (MDI) and psychomotor development index (PDI) scores assessed at 2 years of age based on Bayley Scales of Infant Development (Second Edition). This model also helps to identify the exposure window of susceptibility. RESULTS: Maternal urinary levels of mono-2-ethyl-5-oxohexyl phthalate (MEOHP) (ß = 1.91, 95% CI: 0.43, 3.39), mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) (ß = 1.56, 95% CI: 0.33, 2.79), and the sum of di-(2-ethylhexyl) phthalate metabolites (∑DEHP) (ß = 1.85, 95% CI: 0.39, 3.31) during the first trimester showed the strongest and significant positive associations with intra-twin MDI difference. When stratified with twin chorionicity, the positive associations of monoethyl phthalate (MEP), monoisobutyl phthalate (MiBP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), individual DEHP metabolites, and ∑DEHP exposure during pregnancy with intra-twin neurodevelopmental differences were more significant in monochorionic diamniotic (MCDA) twins than those in dichorionic diamniotic (DCDA) twins. CONCLUSIONS: Neurodevelopmental differences in MCDA twins were strongly associated with prenatal phthalate exposure. Our findings warrant further confirmation in longitudinal studies with larger sample sizes.


Environmental Pollutants , Phthalic Acids , Child , Infant , Pregnancy , Female , Humans , Phthalic Acids/toxicity , Longitudinal Studies , Pregnancy Trimesters , Pregnancy Trimester, First , Mothers , Environmental Exposure , Environmental Pollutants/toxicity , Maternal Exposure/adverse effects
12.
Food Chem X ; 21: 101203, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38384683

The study characterized the aroma-active compounds produced by sesame hulls at three roasting temperatures and analyzed the similarities and differences in the aroma profile of sesame hulls with whole seeds and kernels after roasting. Roasting hulls produced mainly furans, aldehydes, and ketones volatiles. 140 Compounds were identified as aroma-active compounds, including 36 key aroma compounds (odor activity value, OAV ≥ 1). Among them, furanone (caramel-like, OAV = 80), 3-methylbutanal (fruity, OAV = 124), and 2-methoxy-4-vinylphenol (burnt, smoky, OAV = 160) gave hulls (180 °C) sweet, burnt, and smoky aroma. Due to the contribution of vanillin (fatty, sweet milk, OAV = 45), 2-hydroxy-3-butanone (caramel-like, roast, OAV = 46), and 2-methoxy-4-vinylphenol (OAV = 78), hulls (200 °C) shown strong sweet and roast note. These results identified compounds that contributed significantly to the aroma of sesame hulls and elucidated the contribution of sesame hulls to the flavor of roasted whole seeds and sesame oil.

13.
CNS Neurosci Ther ; 30(2): e14637, 2024 02.
Article En | MEDLINE | ID: mdl-38380702

AIMS: Sleep disorders are prevalent among stroke survivors and impede stroke recovery, yet they are still insufficiently considered in the management of stroke patients, and the mechanisms by which they occur remain unclear. There is evidence that boosting phasic GABA signaling with zolpidem during the repair phase improves stroke recovery by enhancing neural plasticity; however, as a non-benzodiazepine hypnotic, the effects of zolpidem on post-stroke sleep disorders remain unclear. METHOD: Transient ischemic stroke in male rats was induced with a 30-minute middle cerebral artery occlusion. Zolpidem or vehicle was intraperitoneally delivered once daily from 2 to 7 days after the stroke, and the electroencephalogram and electromyogram were recorded simultaneously. At 24 h after ischemia, c-Fos immunostaining was used to assess the effect of transient ischemic stroke and acute zolpidem treatment on neuronal activity. RESULTS: In addition to the effects on reducing brain damage and mitigating behavioral deficits, repeated zolpidem treatment during the subacute phase of stroke quickly ameliorated circadian rhythm disruption, alleviated sleep fragmentation, and increased sleep depth in ischemic rats. Immunohistochemical staining showed that in contrast to robust activation in para-infarct and some remote areas by 24 h after the onset of focal ischemia, the activity of the ipsilateral suprachiasmatic nucleus, the biological rhythm center, was strongly suppressed. A single dose of zolpidem significantly upregulated c-Fos expression in the ipsilateral suprachiasmatic nucleus to levels comparable to the contralateral side. CONCLUSION: Stroke leads to suprachiasmatic nucleus dysfunction. Zolpidem restores suprachiasmatic nucleus activity and effectively alleviates post-stroke sleep disturbances, indicating its potential to promote stroke recovery.


Ischemic Stroke , Sleep Wake Disorders , Stroke , Humans , Male , Rats , Animals , Zolpidem/pharmacology , Zolpidem/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Stroke/complications , Stroke/drug therapy , Sleep Wake Disorders/drug therapy , Sleep Wake Disorders/etiology , Infarction, Middle Cerebral Artery/drug therapy , Sleep , Ischemic Stroke/drug therapy
14.
Proc Natl Acad Sci U S A ; 121(8): e2319364121, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38359296

Clonal hematopoiesis (CH) represents the clonal expansion of hematopoietic stem cells and their progeny driven by somatic mutations. Accurate risk assessment of CH is critical for disease prevention and clinical decision-making. The size of CH has been showed to associate with higher disease risk, yet, factors influencing the size of CH are unknown. In addition, the characteristics of CH in long-lived individuals are not well documented. Here, we report an in-depth analysis of CH in longevous (≥90 y old) and common (60~89 y old) elderly groups. Utilizing targeted deep sequencing, we found that the development of CH is closely related to age and the expression of aging biomarkers. The longevous elderly group exhibited a significantly higher incidence of CH and significantly higher frequency of TET2 and ASXL1 mutations, suggesting that certain CH could be beneficial to prolong life. Intriguingly, the size of CH neither correlates significantly to age, in the range of 60 to 110 y old, nor to the expression of aging biomarkers. Instead, we identified a strong correlation between large CH size and the number of mutations per individual. These findings provide a risk assessment biomarker for CH and also suggest that the evolution of the CH is influenced by factor(s) in addition to age.


Clonal Hematopoiesis , Hematopoiesis , Humans , Aged , Clonal Hematopoiesis/genetics , Hematopoiesis/genetics , Aging/genetics , Mutation , Biomarkers
15.
Sci Rep ; 14(1): 4037, 2024 02 19.
Article En | MEDLINE | ID: mdl-38369656

Gut microbiota and their metabolic products might play important roles in regulating the pathogenesis of autism spectrum disorder (ASD). The purpose of this study was to characterize gut microbiota and serum amino acid metabolome profiles in children with ASD. A non-randomized controlled study was carried out to analyze the alterations in the intestinal microbiota and their metabolites in patients with ASD (n = 30) compared with neurotypical controls (NC) (n = 30) by metagenomic sequencing to define the gut microbiota community and liquid chromatography/mass spectrometry (LC/MS) analysis to characterize the metabolite profiles. Compared with children in the NC group, those in the ASD group showed lower richness, higher evenness, and an altered microbial community structure. At the class level, Deinococci and Holophagae were significantly lower in children with ASD compared with TD. At the phylum level, Deinococcus-Thermus was significantly lower in children with ASD compared with TD. In addition, the functional properties (such as galactose metabolism) displayed significant differences between the ASD and NC groups. Five dominant altered species were identified and analyzed (LDA score > 2.0, P < 0.05), including Subdoligranulum, Faecalibacterium_praushitzii, Faecalibacterium, Veillonellaceae, and Rumminococcaceae. The peptides/nickel transport system was the main metabolic pathway involved in the differential species in the ASD group. Decreased ornithine levels and elevated valine levels may increase the risk of ASD through a metabolic pathway known as the nickel transport system. The microbial metabolism in diverse environments was negatively correlated with phascolarctobacterium succinatutens. Our study provides novel insights into compositional and functional alterations in the gut microbiome and metabolite profiles in ASD and the underlying mechanisms between metabolite and ASD.


Autism Spectrum Disorder , Gastrointestinal Microbiome , Child , Humans , Gastrointestinal Microbiome/physiology , Nickel , Metabolome , Amino Acids/metabolism
16.
BMC Cancer ; 24(1): 217, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38360572

OBJECTIVE: The aim of this study was to compare the therapeutic value and treatment-related complications of radical hysterectomy with those of concurrent chemoradiotherapy (CCRT) for locally resectable (T1a2-T2a1) stage IIIC1r cervical cancer. METHODS: A total of 213 patients with locally resectable stage IIIC1r cervical cancer who had been treated at Jiangxi Maternal and Child Health Care Hospital between January 2013 and December 2021 were included in the study and classified into two groups: surgery (148 patients) and CCRT (65 patients). The disease-free survival (DFS) rate, overall survival (OS) rate, side effects, and economic costs associated with the two groups were compared. RESULTS: 43.9% (65/148) patients in the surgical group had no pelvic lymph node metastasis, and 21of them did not require supplementary treatment after surgery due to a low risk of postoperative pathology. The median follow-up time was 46 months (range: 7-108 months). The five-year DFS and OS rates of the surgery group were slightly higher than those of the CCRT group (80.7% vs. 75.1% and 81.6% vs. 80.6%, respectively; p > 0.05). The incidences of grade III-IV gastrointestinal reactions in the surgery and CCRT groups were 5.5% and 9.2%, respectively (p = 0.332). Grade III-IV myelosuppression was identified in 27.6% of the surgery group and 26.2% of the CCRT group (p = 0.836). The per capita treatment cost was higher for the surgery group than for the CCRT group (RMB 123, 918.6 0 vs. RMB 101, 880.90, p = 0.001). CONCLUSION: The therapeutic effects and treatment-related complications of hysterectomy and CCRT are equivalent in patients with locally resectable stage IIIC1r cervical cancer, but surgery can provide accurate lymph node information and benefit patients with unnecessary radiation.


Uterine Cervical Neoplasms , Female , Child , Humans , Uterine Cervical Neoplasms/pathology , Chemoradiotherapy/adverse effects , Lymph Nodes/pathology , Disease-Free Survival , Lymph Node Excision , Retrospective Studies , Neoplasm Staging , Hysterectomy
17.
Int J Hyg Environ Health ; 256: 114324, 2024 Mar.
Article En | MEDLINE | ID: mdl-38271819

BACKGROUND: Women with multiple pregnancies are vulnerable to experience postpartum depression (PPD). Emerging evidence indicates an association between poly- and perfluoroalkyl substances (PFAS) exposure and PPD in women delivering singletons. The health risks of PFAS may also be present in women delivering twins. OBJECTIVE: To estimate the impacts of prenatal PFAS exposure on the risk of PPD in women with twin pregnancies. METHODS: Our study included 150 mothers who gave birth to twins and were enrolled in the Wuhan Twin Birth Cohort. The concentrations of maternal plasma PFAS were measured in each trimester and averaged. Eight individual PFAS were included in analyses. We used Edinburgh Postnatal Depression Scale to evaluate maternal depression at early pregnancy and 1 and 6 months after childbirth. The outcome was dichotomized using a cutoff value of ≥10 for main analyses. Associations were examined using multiple informant models and modified Poisson regressions. PFAS mixture effects were estimated using quantile g-computation. RESULTS: Using quantile g-computation models, a quartile increase in the PFAS mixture during the first, second, third, and average pregnancy was significantly associated with a relative risk (RR) of 1.73 (95% CI: 1.42, 2.12), 1.54 (95% CI: 1.27, 1.84), 1.75 (95% CI: 1.49, 2.08), and 1.63 (95% CI: 1.35, 1.97) for PPD at 6 months after childbirth, respectively. The results of the single-PFAS models also indicated significant positive associations between individual PFAS and PPD at both 1 and 6 months. CONCLUSIONS: The first study of women with twin pregnancies suggests that prenatal exposure to PFAS increases PPD risk up to 6 months postpartum. Twin pregnant women should receive long-term follow-up after delivery and extensive social support.


Alkanesulfonic Acids , Depression, Postpartum , Environmental Pollutants , Fluorocarbons , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Pregnancy, Twin , Depression, Postpartum/epidemiology
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167024, 2024 03.
Article En | MEDLINE | ID: mdl-38242180

Oxidative stress is the common mechanism of sensorineural hearing loss (SNHL) caused by many factors, such as noise, drugs and ageing. Here, we used tert-butyl hydroperoxide (t-BHP) to cause oxidative stress damage in HEI-OC1 cells and in an in vitro cochlear explant model. We observed lipid peroxidation, iron accumulation, mitochondrial shrinkage and vanishing of mitochondrial cristae, which caused hair cell ferroptosis, after t-BHP exposure. Moreover, the number of TUNEL-positive cells in cochlear explants and HEI-OC1 cells increased significantly, suggesting that t-BHP caused the apoptosis of hair cells. Administration of deferoxamine (DFOM) significantly attenuated t-BHP-induced hair cell loss and disordered hair cell arrangement in cochlear explants as well as HEI-OC1 cell death, including via apoptosis and ferroptosis. Mechanistically, we found that DFOM treatment reduced t-BHP-induced lipid peroxidation, iron accumulation and mitochondrial pathological changes in hair cells, consequently mitigating apoptosis and ferroptosis. Moreover, DFOM treatment alleviated GSH depletion caused by t-BHP and activated the Nrf2 signalling pathway to exert a protective effect. Furthermore, we confirmed that the protective effect of DFOM mainly depended on its ability to chelate iron by constructing Fth1 knockout (KO), TfR1 KO and Nrf2 KO HEI-OC1 cell lines using CRISPR/Cas9 technology and a Flag-Fth1 (overexpression) HEI-OC1 cell line using the FlpIn™ System. Our findings suggest that DFOM is a potential drug for SNHL treatment due to its ability to inhibit apoptosis and ferroptosis by chelating iron and scavenging reactive oxygen species (ROS).


Deferoxamine , Ototoxicity , Humans , tert-Butylhydroperoxide/toxicity , tert-Butylhydroperoxide/metabolism , Deferoxamine/pharmacology , Ototoxicity/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Hair Cells, Auditory/metabolism , Iron/metabolism
19.
BMC Public Health ; 24(1): 78, 2024 01 03.
Article En | MEDLINE | ID: mdl-38172763

BACKGROUND: Current evidence suggests that the exclusive breastfeeding (EBF) rate at six months postpartum in China falls considerably below the targets recommended by the World Health Organization (WHO). Socioeconomic disparities in EBF have been observed in developing countries, with significant heterogeneity across studies. Despite the implementation of the Baby-Friendly Hospital Initiative (BFHI) in China since the 1990s to promote breastfeeding, there has been a lack of assessment concerning infants from different socioeconomic backgrounds. This study sought to investigate the association between socioeconomic status (SES) and EBF and explore the potential impact of giving birth at a Baby-Friendly Hospital (BFH) on this association. METHODS: We analyzed data from 98,469 mother-child dyads selected from the Maternal and Child Health Management Information System. We used log-binomial models to examine the relationships between SES and EBF, SES and giving birth at a BFH, as well as BFH births and EBF. Additionally, we explored a counterfactual mediation approach to assess the mediating role of BFH births in the SES-EBF association. FINDINGS: We identified a significant association between SES and EBF (RRMedium vs. Low = 1.47, 95% CI 1.39-1.55; RRHigh vs. Low = 1.40, 95% CI 1.32-1.49). Mothers with higher SES were more likely to give birth at BFHs (RRMedium vs. Low = 1.85, 95% CI 1.81-1.88; RRHigh vs. Low=2.29, 95% CI 2.25-2.33). The significance of the SES-EBF association was attenuated when the type of hospital for childbirth was considered, revealing the significant mediating effect of BFH births in the SES-EBF association. CONCLUSION: Socioeconomic disparities are linked to infant EBF rates, with giving birth at a BFH mediating this association, especially for cases with low SES in rural areas.


Breast Feeding , Mothers , Infant , Female , Humans , Pregnancy , Hospitals , Postpartum Period , Social Class
20.
Hum Exp Toxicol ; 43: 9603271231222873, 2024.
Article En | MEDLINE | ID: mdl-38166464

Background: Hyperoxia-induced acute lung injury (HALI) is a complication to ventilation in patients with respiratory failure, which can lead to acute inflammatory lung injury and chronic lung disease. The aim of this study was to integrate bioinformatics analysis to identify key genes associated with HALI and validate their role in H2O2-induced cell injury model.Methods: Integrated bioinformatics analysis was performed to screen vital genes involved in hyperoxia-induced lung injury (HLI). CCK-8 and flow cytometry assays were performed to assess cell viability and apoptosis. Western blotting was performed to assess protein expression.Results: In this study, glycoprotein non-metastatic melanoma protein B (Gpnmb) was identified as a key gene in HLI by integrated bioinformatics analysis of 4 Gene Expression Omnibus (GEO) datasets (GSE97804, GSE51039, GSE76301 and GSE87350). Knockdown of Gpnmb increased cell viability and decreased apoptosis in H2O2-treated MLE-12 cells, suggesting that Gpnmb was a proapoptotic gene during HALI. Western blotting results showed that knockdown of Gpnmb reduced the expression of Bcl-2 associated X (BAX) and cleaved-caspase 3, and increased the expression of Bcl-2 in H2O2 treated MLE-12 cells. Furthermore, Gpnmb knockdown could significantly reduce reactive oxygen species (ROS) generation and improve the mitochondrial membrane potential.Conclusion: The present study showed that knockdown of Gpnmb may protect against HLI by repressing mitochondrial-mediated apoptosis.


Acute Lung Injury , Hyperoxia , Melanoma , Membrane Glycoproteins , Humans , Acute Lung Injury/genetics , Acute Lung Injury/prevention & control , Apoptosis , bcl-X Protein , Hydrogen Peroxide , Hyperoxia/complications , Hyperoxia/genetics , Hyperoxia/metabolism , Proto-Oncogene Proteins c-bcl-2 , Membrane Glycoproteins/genetics , Gene Silencing
...