Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 223
1.
ACS Biomater Sci Eng ; 2024 May 12.
Article En | MEDLINE | ID: mdl-38736179

Disruption of the symbiosis of extra/intratumoral metabolism is a good strategy for treating tumors that shuttle resources from the tumor microenvironment. Here, we report a precision treatment strategy for enhancing pyruvic acid and intratumoral acidosis to destroy tumoral metabolic symbiosis to eliminate tumors; this approach is based on PEGylated gold and lactate oxidase-modified aminated dendritic mesoporous silica with lonidamine and ferrous sulfide loading (PEG-Au@DMSNs/FeS/LND@LOX). In the tumor microenvironment, LOX oxidizes lactic acid to produce pyruvate, which represses tumor cell proliferation by inhibiting histone gene expression and induces ferroptosis by partial histone monoubiquitination. In acidic tumor conditions, the nanoparticles release H2S gas and Fe2+ ions, which can inhibit catalase activity to promote the Fenton reaction of Fe2+, resulting in massive ·OH production and ferroptosis via Fe3+. More interestingly, the combination of H2S and LND (a monocarboxylic acid transporter inhibitor) can cause intracellular acidosis by lactate, and protons overaccumulate in cells. Multiple intracellular acidosis is caused by lactate-pyruvate axis disorders. Moreover, H2S provides motive power to intensify the shuttling of nanoparticles in the tumor region. The findings confirm that this nanomedicine system can enable precise antitumor effects by disrupting extra/intratumoral metabolic symbiosis and inducing ferroptosis and represents a promising active drug delivery system candidate for tumor treatment.

2.
Int J Biol Sci ; 20(6): 2236-2260, 2024.
Article En | MEDLINE | ID: mdl-38617546

Thrombocytopenia, a prevalent hematologic challenge, correlates directly with the mortality of numerous ailments. Current therapeutic avenues for thrombocytopenia are not without limitations. Here, we identify genistin, an estrogen analogue, as a promising candidate for thrombocytopenia intervention, discovered through AI-driven compound library screening. While estrogen's involvement in diverse biological processes is recognized, its role in thrombopoiesis remains underexplored. Our findings elucidate genistin's ability to enhance megakaryocyte differentiation, thereby augmenting platelet formation and production. In vivo assessments further underscore genistin's remedial potential against radiation-induced thrombocytopenia. Mechanistically, genistin's efficacy is attributed to its direct interaction with estrogen receptor ß (ERß), with subsequent activation of both ERK1/2 and the Akt signaling pathways membrane ERß. Collectively, our study positions genistin as a prospective therapeutic strategy for thrombocytopenia, shedding light on novel interplays between platelet production and ERß.


Isoflavones , Thrombocytopenia , Humans , Estrogen Receptor beta/genetics , Thrombocytopenia/drug therapy , Small Molecule Libraries
3.
Molecules ; 29(5)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38474552

Bitespiramycin, has been shown to have a therapeutic effect against respiratory tract inflammation, including a potential effect against COVID-19. A current clinical trial in China showed that bitespiramycin was an effective treatment for severe pneumonia and intracranial infection. However, there is lack of an analytical method to elucidate the distribution of bitespiramycin. In this study, a highly sensitive, rapid and reliable UPLC-MS/MS method was developed to comprehensively characterize the bitespiramycin distribution in various bio-samples, which is significantly improved upon the published work. A rapid sample preparation method was developed by using n-butanol as the solvent to extract bitespiramycin from different bio-samples. The extract was then directly analyzed by UPLC-MS/MS coupled with an alkaline-resistant column after centrifugation which avoids the time-consuming concentration process under nitrogen and redissolution. The method was employed to accurately quantify bitespiramycin and its metabolites in rat plasma, tissues, and human cerebrospinal fluid. Notably, the presence of bitespiramycin and its metabolites was identified for the first time in various rat organs including brain, testis, bladder and prostate as well as in human cerebrospinal fluid. This newly developed approach shows great promise for drug distribution assays including other antibiotics and can help elucidate the ADME of bitespiramycin.


Liquid Chromatography-Mass Spectrometry , Spiramycin/analogs & derivatives , Male , Rats , Humans , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods
5.
Nanoscale ; 16(3): 1282-1290, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38126775

As emerging nanosystems, nanomotors have been applied in the active treatment of many diseases. In this paper, Pt@chitosan-loaded melatonin asymmetrical nanomaterials embedded with L-serine (S, kidney injury molecule 1-targeting agent) were constructed to alleviate acute kidney injury (AKI). The Janus nanocarriers arrived at the renal injury site via the bloodstream and exhibited high permeability. Because of melatonin distribution in the kidneys combined with H2O2-stimulated O2 release, the administration of the Janus nanosystem resulted in active treatment through the motion of nanomotors by asymmetrical O2 release.


Acute Kidney Injury , Melatonin , Nanostructures , Humans , Hydrogen Peroxide , Permeability , Acute Kidney Injury/drug therapy
6.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 809-817, 2023 May 30.
Article En | MEDLINE | ID: mdl-37249332

ING5 belongs to the inhibitor of growth (ING) candidate tumor suppressor family, which is involved in multiple cellular functions, such as cell cycle regulation, apoptosis, and chromatin remodelling. Previously, we reported that ING5 overexpression inhibits EMT by regulating EMT-related molecules, including Snail1, at the mRNA and protein levels. However, the mechanisms remain unclear. In the current study, we identify that ING5 overexpression induces the upregulation of miR-34c-5p. The expression levels of both ING5 and miR-34c-5p in NSCLC tissues from the TCGA database are decreased compared with that in adjacent tissues. Higher expression levels of both ING5 and miR-34c-5p predict longer overall survival (OS). Snail1 is the target gene of miR-34c-5p, as predicted by an online database, which is further verified by a dual-luciferase reporter assay. The expression level of Snail1 in NSCLC cells is markedly reduced following miR-34c-5p overexpression, leading to the inactivation of the Snail1 downstream TGF-ß/Smad3 signaling pathway. The TGF-ß signaling-specific inhibitor LY2157299 reverses the enhanced EMT, proliferation, migration, and invasion abilities induced by the miR-34c-5p inhibitor. Furthermore, tail vein injection of miR-34c-5p agomir inhibits xenografted tumor metastasis. Overall, this study concludes that miR-34c-5p, induced by ING5 overexpression, is a tumor suppressor that targets Snail1 and mediates the inhibitory effects of ING5 on the EMT and invasion of NSCLC cells. These results provide a novel mechanism mediating the antitumor effects of ING5.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Transforming Growth Factor beta/metabolism , Gene Expression Regulation, Neoplastic , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
8.
Nanoscale ; 15(14): 6745-6758, 2023 Apr 06.
Article En | MEDLINE | ID: mdl-36942933

Effective drugs that can be quickly delivered to and retained for a long time in the renal tubule are necessary for acute kidney injury (AKI) treatment. In this study, a gold nanoparticle-modified mesoporous silica (Au@MSN-NH2)-camouflaged (methoxyphenyl)(morpholino)phosphinodithioic acid (GYY4137) asymmetrical nanosystem decorated with L-serine (S; an AKI-targeting agent) and D-Arg-dimethylTyr-Lys-Phe-NH2 (TK-SS31; a reactive oxygen species (ROS)-sensitive thioketal linker/mitochondria-targeted antioxidant) was constructed for the treatment of renal tubule and mitochondrial injury as well as the synergistic and active treatment of AKI. Due to the enhanced permeability and retention (EPR) of nanomotors, they could progressively accumulate in renal sites. The asymmetrical nanosystem achieved effective drug distribution in the kidney as well as pH-responsive hydrogen sulfide (H2S) release and ROS-responsive SS31 release, resulting in an active therapeutic effect mediated by nanomotor motion resulting from asymmetrical H2S release.


Acute Kidney Injury , Metal Nanoparticles , Nanoparticles , Humans , Reactive Oxygen Species , Gold , Kidney , Hydrogen-Ion Concentration
9.
Acta Biomater ; 160: 265-280, 2023 04 01.
Article En | MEDLINE | ID: mdl-36822483

Myocardial ischemia-reperfusion injury (MI/RI) seriously restricts the therapeutic effect of reperfusion. It is demonstrated that ferroptosis and apoptosis of cardiomyocytes are widely involved in MI/RI. Therefore, simultaneous inhibition of ferroptosis and apoptosis of cardiomyocytes can be a promising strategy to treat MI/RI. Besides, transferrin receptor 1 (TfR1) is highly expressed in ischemic myocardium, and apoferritin (ApoFn) is a ligand of the transferrin receptor. In this study, CsA@ApoFn was prepared by wrapping cyclosporin A (CsA) with ApoFn and actively accumulated in ischemic cardiomyocytes through TfR1 mediated endoctosis in MI/RI mice. After entering cardiomyocytes, ApoFn in CsA@ApoFn inhibited ferroptosis of ischemic cardiomyocytes by increasing the protein expression of GPX4 and reducing the content of labile iron pool and lipid peroxides. At the same time, CsA in CsA@ApoFn attenuated the apoptosis of ischemic cardiomyocytes through recovering mitochondrial membrane potential and reducing the level of reactive oxygen species, which played a synergistic role with ApoFn in the treatment of MI/RI. In conclusion, CsA@ApoFn restored cardiac function of MI/RI mice by simultaneously blocking ferroptosis and apoptosis of cardiomyocytes. ApoFn itself not only served as a safe carrier to specifically deliver CsA to ischemic cardiomyocytes but also played a therapeutic role on MI/RI. CsA@ApoFn is proved as an effective drug delivery platform for the treatment of MI/RI. STATEMENT OF SIGNIFICANCE: Recent studies have shown that ferroptosis is an important mechanism of myocardial ischemia-reperfusion injury (MI/RI). Therefore, simultaneous inhibition of ferroptosis and apoptosis of cardiomyocytes can be a promising strategy to treat MI/RI. Apoferritin, as a delivery carrier, can actively target to ischemic myocardium through binding with highly expressed transferrin receptor on ischemic cardiomyocytes. At the same time, apoferritin plays a protective role on ischemic cardiomyocytes by inhibiting ferroptosis. This strategy of killing two birds with one stone significantly improves the therapeutic effect on MI/RI while does not need more pharmaceutical excipients, which has the prospect of clinical transformation.


Ferroptosis , Myocardial Reperfusion Injury , Mice , Animals , Myocytes, Cardiac/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Cyclosporine/pharmacology , Cyclosporine/chemistry , Cyclosporine/metabolism , Apoferritins/pharmacology , Apoferritins/metabolism , Apoferritins/therapeutic use , Apoptosis
10.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article En | MEDLINE | ID: mdl-36674552

Platelets are the second most abundant blood component after red blood cells and can participate in a variety of physiological and pathological functions. Beyond its traditional role in hemostasis and thrombosis, it also plays an indispensable role in inflammatory diseases. However, thrombocytopenia is a common hematologic problem in the clinic, and it presents a proportional relationship with the fatality of many diseases. Therefore, the prevention and treatment of thrombocytopenia is of great importance. The expression of Toll-like receptors (TLRs) is one of the most relevant characteristics of thrombopoiesis and the platelet inflammatory function. We know that the TLR family is found on the surface or inside almost all cells, where they perform many immune functions. Of those, TLR2 and TLR4 are the main stress-inducing members and play an integral role in inflammatory diseases and platelet production and function. Therefore, the aim of this review is to present and discuss the relationship between platelets, inflammation and the TLR family and extend recent research on the influence of the TLR2 and TLR4 pathways and the regulation of platelet production and function. Reviewing the interaction between TLRs and platelets in inflammation may be a research direction or program for the treatment of thrombocytopenia-related and inflammatory-related diseases.


Thrombocytopenia , Thrombopoiesis , Humans , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptors , Thrombocytopenia/metabolism , Inflammation
11.
Haematologica ; 108(5): 1394-1411, 2023 05 01.
Article En | MEDLINE | ID: mdl-36546424

Thrombocytopenia is a thrombopoietin (TPO)-related disorder with very limited treatment options, and can be lifethreatening. There are major problems with typical thrombopoietic agents targeting TPO signaling, so it is urgent to discover a novel TPO-independent mechanism involving thrombopoiesis and potential druggable targets. We developed a drug screening model by the multi-grained cascade forest (gcForest) algorithm and found that 3,8-di-O-methylellagic acid 2- O-glucoside (DMAG) (10, 20 and 40 µM) promoted megakaryocyte differentiation in vitro. Subsequent investigations revealed that DMAG (40 mM) activated ERK1/2, HIF-1b and NF-E2. Inhibition of ERK1/2 blocked megakaryocyte differentiation and attenuated the upregulation of HIF-1b and NF-E2 induced by DMAG. Megakaryocyte differentiation induced by DMAG was inhibited via knockdown of NF-E2. In vivo studies showed that DMAG (5 mg/kg) accelerated platelet recovery and megakaryocyte differentiation in mice with thrombocytopenia. The platelet count of the DMAG-treated group recovered to almost 72% and 96% of the count in the control group at day 10 and 14, respectively. The platelet counts in the DMAG-treated group were almost 1.5- and 1.3-fold higher compared with those of the irradiated group at day 10 and 14, respectively. Moreover, DMAG (10, 25 and 50 mM) stimulated thrombopoiesis in zebrafish. DMAG (5 mg/kg) could also increase platelet levels in c-MPL knockout (c-MPL-/-) mice. In summary, we established a drug screening model through gcForest and demonstrated that DMAG promotes megakaryocyte differentiation via the ERK/HIF1/NF-E2 pathway which, importantly, is independent of the classical TPO/c-MPL pathway. The present study may provide new insights into drug discovery for thrombopoiesis and TPO-independent regulation of thrombopoiesis, as well as a promising avenue for thrombocytopenia treatment.


Anemia , Thrombocytopenia , Animals , Mice , Anemia/metabolism , Blood Platelets/metabolism , Megakaryocytes/metabolism , Thrombocytopenia/metabolism , Thrombopoiesis/physiology , Thrombopoietin/therapeutic use , Zebrafish/metabolism , Glucosides/therapeutic use
12.
J Ethnopharmacol ; 301: 115805, 2023 Jan 30.
Article En | MEDLINE | ID: mdl-36216195

ETHNOPHARMACOLOGICAL RELEVANCE: Shenkang injection (SKI), a Chinese patent medicine injection, has been approved for the treatment of chronic kidney disease (CKD) due to its definite clinical therapeutic efficacy. However, the effect and associated underlying mechanism of Shenkang injection against cisplatin (CDDP)-induced acute kidney injury (AKI) has not yet been well elucidated. AIM OF THE STUDY: This study aims to investigate the therapeutic effect and associated underlying mechanism of Shenkang injection against CDDP-induced AKI. MATERIALS AND METHODS: We established a CDDP-induced AKI mouse model to evaluate renal function by biochemical markers measurement and to observe histopathological alterations by haemotoxylin and eosin (HE)-staining sections of renal. In addition, the distribution of representative components of SKI in the kidneys of mice was evaluated by liquid chromatography tandem mass spectrometry (LC-MS/MS). Furthermore, the degree of oxidative stress and inflammation were assessed by detecting the levels of inflammatory cytokines and oxidants, while the related mechanisms were elucidated by network pharmacology. RESULTS: CDDP could induce excessive inflammation and severe injury to the kidneys of mice. However, SKI significantly ameliorated the kidney damages and improved the renal function by reducing the levels of renal function markers (SCr, BUN and urine protein), and inhibiting the production of inflammatory cytokines IL-34, IL-6 and TNF-α. SKI repaired oxidative balance through up-regulation of antioxidants SOD and GSH and down-regulated oxidants MDA. Moreover, 4 components from SKI were detected in the kidney by LC-MS/MS quantification. In addition, pharmacology network indicated the PI3K/AKT, TNF, MAPK, and p53 were the possible signaling pathways for the therapeutic effect of SKI against CDDP-induced AKI, which were related to inflammation, oxidative stress and apoptosis. CONCLUSION: In the present study, we for the first time demonstrated that SKI alleviates CDDP-induced nephrotoxicity by antioxidant and anti-inflammation via regulating PI3K/AKT, MAPK, TNF, and p53 signaling pathways. The study may provide a scientific rationale for the clinical indication of SKI.


Acute Kidney Injury , Cisplatin , Mice , Animals , Cisplatin/toxicity , Chromatography, Liquid , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tumor Suppressor Protein p53/metabolism , Tandem Mass Spectrometry , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Kidney , Oxidative Stress , Apoptosis , Inflammation/pathology , Antioxidants/pharmacology , Oxidants/metabolism , Cytokines/metabolism
13.
Int J Mol Sci ; 23(22)2022 Nov 14.
Article En | MEDLINE | ID: mdl-36430539

BACKGROUND: Cibotii rhizoma (CR) is a famous traditional Chinese medicine (TCM) used to treat bleeding, rheumatism, lumbago, etc. However, its therapeutic effects and mechanism against thrombocytopenia are still unknown so far. In the study, we investigated the effects of aqueous extracts of Cibotii rhizoma (AECRs) against thrombocytopenia and its molecular mechanism. METHODS: Giemsa staining, phalloidin staining, and flow cytometry were performed to measure the effect of AECRs on the megakaryocyte differentiation in K562 and Meg-01 cells. A radiation-induced thrombocytopenia mouse model was constructed to assess the therapeutic actions of AECRs on thrombocytopenia. Network pharmacology and experimental verification were carried out to clarify its mechanism against thrombocytopenia. RESULTS: AECRs promoted megakaryocyte differentiation in K562 and Meg-01 cells and accelerated platelet recovery and megakaryopoiesis with no systemic toxicity in radiation-induced thrombocytopenia mice. The PI3K/AKT, MEK/ERK, and JAK2/STAT3 signaling pathways contributed to AECR-induced megakaryocyte differentiation. The suppression of the above signaling pathways by their inhibitors blocked AERC-induced megakaryocyte differentiation. CONCLUSIONS: AECRs can promote megakaryopoiesis and thrombopoiesis through activating PI3K/AKT, MEK/ERK, and JAK2/STAT3 signaling pathways, which has the potential to treat radiation-induced thrombocytopenia in the clinic.


Thrombocytopenia , Thrombopoiesis , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Mitogen-Activated Protein Kinase Kinases/metabolism
14.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 28.
Article En | MEDLINE | ID: mdl-36297316

Thrombocytopenia is one of the most common complications of cancer therapy. Until now, there are still no satisfactory medications to treat chemotherapy and radiation-induced thrombocytopenia (CIT and RIT, respectively). Caulis Polygoni Multiflori (CPM), one of the most commonly used Chinese herbs, has been well documented to nourish blood for tranquilizing the mind and treating anemia, suggesting its beneficial effect on hematopoiesis. However, it is unknown whether CPM can accelerate megakaryopoiesis and thrombopoiesis. Here, we employ a UHPLC Q-Exactive HF-X mass spectrometer (UHPLC QE HF-X MS) to identify 11 ingredients in CPM. Then, in vitro experiments showed that CPM significantly increased megakaryocyte (MK) differentiation and maturation but did not affect apoptosis and lactate dehydrogenase (LDH) release of K562 and Meg-01 cells. More importantly, animal experiments verified that CPM treatment markedly accelerated platelet recovery, megakaryopoiesis and thrombopoiesis in RIT mice without hepatic and renal toxicities in vivo. Finally, RNA-sequencing (RNA-seq) and western blot were used to determine that CPM increased the expression of proteins related to PI3K/Akt and MEK/ERK (MAPK) signaling pathways. On the contrary, blocking PI3K/Akt and MEK/ERK signaling pathways with their specific inhibitors suppressed MK differentiation induced by CPM. In conclusion, for the first time, our study demonstrates that CPM may be a promised thrombopoietic agent and provide an experimental basis for expanding clinical use.

15.
Front Pharmacol ; 13: 965390, 2022.
Article En | MEDLINE | ID: mdl-36160419

Rubia cordifolia (family: Rubiaceae) L (R. cordifolia) is a perennial botanical drug climbing vine. As the main part of the traditional Chinese medicine, the rhizome has a long history. A great number of literary studies have reported that it can be used for the improvement of blood circulation, hemostasis, activation of collaterals, etc. When it comes to the wide application of R. cordifolia in traditional medicine, we systematically review its traditional uses, phytochemistry and pharmacological effects. Literatures were systematically searched using several scientific databases, including China National Knowledge Infrastructure (CNKI), Baidu Scholar, PubMed, Web of Science, and other professional websites. Kew Botanical Garden and the iPlant were used for obtaining the scientific names and plant images of R. cordifolia. In addition, other information was also gathered from books including traditional Chinese herbal medicine, the Chinese Pharmacopoeia, and Chinese Materia Medica. So far, many prescriptions containing R. cordifolia have been widely used in the clinical treatment of abnormal uterine bleeding, primary dysmenorrhea and other gynecological diseases, allergic purpura, renal hemorrhage and other diseases. The phytochemistry studies have reported that more than 100 compounds are found in R. cordifolia, such as bicyclic peptides, terpenes, polysaccharides, trace elements, flavonoids, and quinones. Among them, quinones and peptides are the types of components with the highest contents in R. cordifolia. The modern pharmacological studies have revealed that R. cordifolia and its derived components have anti-tumor, anti-oxidative, anti-platelet aggregation, and anti-inflammatory effects. However, most studies are preclinical. The pharmacological mechanism of R. cordifolia has not been thoroughly studied. In addition, there are few pharmacokinetic and toxicity studies of R. cordifolia, therefore the clinical safety data for R. cordifolia is lacking. To sum up, this review for the first time summarizes a systemic and integrated traditional uses, chemical compositions, pharmacological actions and clinical applications of R. cordifolia, which provides the novel and full-scale insight for the drug development, medicinal value, and application of R. cordifolia in the future.

16.
Pharm Biol ; 60(1): 1169-1176, 2022 Dec.
Article En | MEDLINE | ID: mdl-35701112

CONTEXT: S-Propargyl-cysteine (SPRC), an endogenous H2S modulator, exerts anti-inflammatory effects on cardiovascular and neurodegenerative disease, but it remains unknown whether SPRC can prevent autoimmune hepatitis. OBJECTIVE: To evaluate the preventive effect of SPRC on concanavalin A (Con A)-induced liver injury and uncover the underlying mechanisms. MATERIALS AND METHODS: Mice were randomly divided into five groups: control, Con A, SPRC (5 and 10 mg/kg injected intravenously once a day for 7 days), and propargylglycine (PAG; 50 mg/kg injected intraperitoneally 0.5 h before SPRC for 7 days). All mice except the controls were intravenously injected with Con A (20 mg/kg) on day 7. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were evaluated using kits. Inflammatory cytokines (TNF-α and IFN-γ) in the blood and in the liver were detected by ELISA Kit and real-time PCR, respectively. The expression of mitogen-activated protein kinase (MAPK) pathway proteins (p-JNK and p-Akt) and apoptosis proteins (Bax and Bcl-2) was detected using western blotting. RESULTS: SPRC reduced the levels of AST (p < 0.05) and ALT (p < 0.01) and decreased the release of the inflammatory cytokines. Mechanistically, SPRC increased H2S level (p < 0.05) and promoted cystathionine γ-lyase (CSE) expression (p < 0.05). SPRC inhibited the MAPK pathway activation and the apoptosis pathway. All the effects of SPRC were blocked by the CSE inhibitor PAG. CONCLUSIONS: SPRC prevents Con A-induced liver injury in mice by promoting CSE expression and producing endogenous H2S. The mechanisms include reducing the release of inflammatory cytokines, attenuating MAPK pathway activation, and alleviating apoptosis.


Chemical and Drug Induced Liver Injury, Chronic , Hydrogen Sulfide , Neurodegenerative Diseases , Animals , Concanavalin A/toxicity , Cysteine/pharmacology , Cytokines , Hydrogen Sulfide/metabolism , Mice
17.
J Nanobiotechnology ; 20(1): 256, 2022 Jun 03.
Article En | MEDLINE | ID: mdl-35658867

BACKGROUND: Ischemic stroke is one of the main causes of death and disability in the world. The treatment for ischemic stroke is to restore blood perfusion as soon as possible. However, when ischemic brain tissue is re-perfused by blood, the mitochondrial permeability transition pore (mPTP) in neuron and microglia is excessively opened, resulting in the apoptosis of neuron and nerve inflammation. This aggravates nerve injury. Cyclosporine A (CsA) inhibits the over-opening of mPTP, subsequently reducing the release of ROS and the apoptosis of cerebral ischemia/reperfusion injured neuron and microglia. However, CsA is insoluble in water and present in high concentrations in lymphatic tissue. Herein, cerebral infarction tissue targeted nanoparticle (CsA@HFn) was developed to treat cerebral ischemia/reperfusion injury. RESULTS: CsA@HFn efficiently penetrated the blood-brain barrier (BBB) and selectively accumulated in ischemic area, inhibiting the opening of mPTP and ROS production in neuron. This subsequently reduced the apoptosis of neuron and the damage of BBB. Consequently, CsA@HFn significantly reduced the infarct area. Moreover, CsA@HFn inhibited the recruitment of astrocytes and microglia in ischemic region and polarized microglia into M2 type microglia, which subsequently alleviated the nerve inflammation. CONCLUSIONS: CsA@HFn showed a significant therapeutic effect on cerebral ischemia/reperfusion injury by alleviating the apoptosis of neuron, nerve inflammation and the damage of BBB in ischemic area. CsA@HFn has great potential in the treatment of ischemic stroke.


Brain Ischemia , Ischemic Stroke , Nanoparticles , Reperfusion Injury , Animals , Mice , Brain , Brain Ischemia/drug therapy , Cyclosporine/pharmacology , Inflammation/drug therapy , Ischemia/drug therapy , Mitochondrial Permeability Transition Pore , Reactive Oxygen Species , Reperfusion Injury/drug therapy
18.
J Nanobiotechnology ; 20(1): 251, 2022 Jun 03.
Article En | MEDLINE | ID: mdl-35659239

BACKGROUND: At present, patients with myocardial infarction remain an increased risk for myocardial ischemia/reperfusion injury (MI/RI). There lacks effectively method to treat MI/RI in clinic. For the treatment of MI/RI, it is still a bottleneck to effectively deliver drug to ischemic myocardium. In this paper, a regulatory T cells (Tregs) biomimetic nanoparticle (CsA@PPTK) was prepared by camouflaging nanoparticle with platelet membrane. RESULTS: CsA@PPTK actively accumulated in ischemic myocardium of MI/RI mice. CsA@PPTK significantly scavenged reactive oxygen species (ROS) and increased the generation of Tregs and the ratio of M2 type macrophage to M1 type macrophage in ischemic myocardium. Moreover, CsA@PPTK significantly attenuated apoptosis of cardiomyocytes and reduced the infarct size and fibrosis area in ischemic myocardium. CsA@PPTK markedly decreased the protein expression of MMP-9 and increased the protein expression of CX43 in ischemic myocardium tissue. Subsequently, the remodeling of the left ventricle was significant alleviated, and heart function of MI/RI mice was markedly improved. CONCLUSION: CsA@PPTK showed significant therapeutic effect on MI/RI, and it has great potential application in the treatment of MI/RI.


Myocardial Infarction , Myocardial Reperfusion Injury , Nanoparticles , Animals , Apoptosis , Biomimetics , Humans , Mice , Myocardial Reperfusion Injury/drug therapy , Oxidation-Reduction
19.
Eur J Pharm Sci ; 175: 106235, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35697287

Olsalazine is a typical 5-aminosalicylic acid (5-ASA) drug that depends on gut microbiota to liberate its anti-inflammatory moiety 5-ASA in the treatment of ulcerative colitis (UC). In recent decades, 5-ASA drugs combined with probiotics have achieved a better effective treatment for UC. Mechanisms of combination therapy have been widely discussed from a pharmacodynamic perspective. However, it is still unclear whether the better therapeutic efficacy of combination therapy was made by changing the metabolism of 5-ASA drugs in the colon under the regulation of probiotics. In the present study, combined with pharmacokinetic and gut microbiota analyses, we systematically evaluated the potential effect of Lactobacillus acidophilus (L. acidophilus) on the metabolism of Olsalazine at three levels (pharmacokinetic characteristics, metabolic microbiota, and metabolic enzymes) to offer some insights into this issue. As pharmacokinetic results showed, L. acidophilus barely had an influence on the pharmacokinetic parameters of Olsalazine, 5-ASA, and N-Ac-5-ASA. Notably, the colonic exposure of 5-ASA was not affected by L. acidophilus. Gut microbiota results also illustrated that L. acidophilus did not change the total abundance of azoreductase (azoR) and N-acetyltransferase (NAT) associated gut microbiota and enzymes, which are involved in the metabolism of Olsalazine. Both pharmacokinetic and gut microbiota results revealed that L. acidophilus did not increase the colonic exposure of 5-ASA to improve the efficacy of combination therapy. L. acidophilus played its role in UC treatment by regulating gut microbiota composition and amino acid, phenolic acid, oligosaccharide, and peptidoglycan metabolic pathways. There was no potential medication risk of combination therapy of Olsalazine and L. acidophilus. In summary, this research provided strong evidence of medication safety and a comprehensive understanding of therapeutic advantages for combination therapy of probiotics and 5-ASA drugs from the pharmacokinetic and gut microbiota perspectives.


Colitis, Ulcerative , Gastrointestinal Microbiome , Probiotics , Aminosalicylic Acids , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Lactobacillus acidophilus , Mesalamine/therapeutic use , Rats
20.
ACS Nano ; 16(5): 7409-7427, 2022 05 24.
Article En | MEDLINE | ID: mdl-35549164

Glioblastoma (GBM) is an invasive cancer with high mortality in central nervous system. Resistance to temozolomide (TMZ) and immunosuppressive microenvironment lead to low outcome of the standardized treatment for GBM. In this study, a 2-deoxy-d-glucose modified lipid polymer nanoparticle loaded with TMZ and siPD-L1 (TMZ/siPD-L1@GLPN/dsb) was prepared to reprogram the TMZ-resistant and immunosuppressive microenvironment in orthotopic GBM. TMZ/siPD-L1@GLPN/dsb simultaneously delivered a large amount of TMZ and siPD-L1 to the deep area of the orthotopic TMZ-resistant GBM tissue. By inhibiting PD-L1 protein expression, TMZ/siPD-L1@GLPN/dsb markedly augmented the percentage of CD3+CD8+IFN-γ+ cells (Teff cells) and reduced the percentage of CD4+CD25+FoxP3+ cells (Treg cells) in orthotopic TMZ-resistant GBM tissue, which enhanced T-cell mediated cytotoxicity on orthotopic TMZ-resistant GBM. Moreover, TMZ/siPD-L1@GLPN/dsb obviously augmented the sensitivity of orthotopic TMZ-resistant GBM to TMZ through decreasing the protein expression of O6-methyl-guanine-DNA methyltransferase (MGMT) in TMZ-resistant GBM cells. Thus, TMZ/siPD-L1@GLPN/dsb markedly restrained the growth of orthotopic TMZ-resistant GBM and extended the survival time of orthotopic GBM rats through reversing a TMZ-resistant and immunosuppressive microenvironment. TMZ/siPD-L1@GLPN/dsb shows potential application to treat orthotopic TMZ-resistant GBM.


Brain Neoplasms , Glioblastoma , Animals , Rats , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm , Glioblastoma/genetics , O(6)-Methylguanine-DNA Methyltransferase/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , O(6)-Methylguanine-DNA Methyltransferase/pharmacology , Temozolomide/pharmacology , Temozolomide/therapeutic use , Tumor Microenvironment , Xenograft Model Antitumor Assays , Nanoparticle Drug Delivery System
...