Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(5): 576-581, 2021 Oct 01.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-34636207

RESUMEN

OBJECTIVES: This study was performed to investigate the microstructure and mechanical properties of dental zirconia manufactured by digital light processing (DLP) 3D printing and the clinical application prospects of this material. METHODS: The experiment (DLP) group was zirconia manufactured by DLP 3D printing, and the control (MILL) group was milled zirconia. The density, grain size, and phase composition were measured to study the microstructure. Flexural strength was measured by using three-point bending tests, while Vickers hardness was determined through a Vickers hardness tester. Fracture toughness was tested using the single-edge V-notched beam method. RESULTS: Zirconia density of the DLP group was (6.019 8±0.021 3) g·cm-3, and the average grain size was (0.603 0±0.032 6) µm, but without statistical difference with the corresponding values of the MILL group (P>0.05). Tetragonal phase was found in the X-ray diffraction patterns of the DLP and MILL groups. The flexural strength of the DLP group was (1 012.7±125.5) MPa, and Vickers hardness was (1 238.5±10.8) HV1, which was slightly lower than that of the MILL group (P<0.05). The fracture toughness of the DLP group was (7.22±0.81) MPa·m1/2, which was not statistically different from that of the MILL group (P>0.05). CONCLUSIONS: Zirconia manufactured by DLP 3D printing had microstructure and mechanical properties similar to those of the milled zirconia. Only the flexural strength and the Vickers hardness of the experimental zirconia were slightly lower than those of the milled zirconia. Therefore, DLP-manufactured zirconia has a promising future for clinical use.


Asunto(s)
Porcelana Dental , Circonio , Ensayo de Materiales , Impresión Tridimensional
2.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 38(3): 350-355, 2020 Jun 01.
Artículo en Chino | MEDLINE | ID: mdl-32573148

RESUMEN

The minimum amount of tooth preparation that can be fully controlled is crucial in achieving long-term, stable, and effective aesthetic restoration, which is also a major difficulty in aesthetic restoration. The tooth preparation can be imple-mented efficiently and accurately through digital technology based on the fixed-deep hole guiding technology. Prior the actual tooth preparation, the technology first designs the virtual contour, layering, and virtual occlusion of the prosthesis on the computer. Then, virtual tooth preparation is carried out by cutting back according to the virtual prosthesis. Next, the virtual drilling operation plan is designed according to the shape of the virtual tooth preparation and the contour of the abutment tooth. Finally, the tooth preparation guide plate is designed and printed in 3D. It realizes the whole process of quantitative and precise guidance of dental preparation, visualizes the restoration space, reduces the clinical operation time, and guarantees the quality of dental preparation. It also promotes the improvement of the teaching quality of digital practical exercises.


Asunto(s)
Estética Dental , Diente , Placas Óseas , Impresión Tridimensional , Preparación del Diente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA