Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Trends Biochem Sci ; 49(4): 318-332, 2024 Apr.
Article En | MEDLINE | ID: mdl-38350804

To fulfill their actual cellular role, individual microtubules become functionally specialized through a broad range of mechanisms. The 'search and capture' model posits that microtubule dynamics and functions are specified by cellular targets that they capture (i.e., a posteriori), independently of the microtubule-organizing center (MTOC) they emerge from. However, work in budding yeast indicates that MTOCs may impart a functional identity to the microtubules they nucleate, a priori. Key effectors in this process are microtubule plus-end tracking proteins (+TIPs), which track microtubule tips to regulate their dynamics and facilitate their targeted interactions. In this review, we discuss potential mechanisms of a priori microtubule specialization, focusing on recent findings indicating that +TIP networks may undergo liquid biomolecular condensation in different cell types.


Microtubule-Associated Proteins , Microtubules , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism
2.
Nat Cell Biol ; 25(1): 56-67, 2023 Jan.
Article En | MEDLINE | ID: mdl-36536177

Microtubule plus-end tracking proteins (+TIPs) control microtubule specialization and are as such essential for cell division and morphogenesis. Here we investigated interactions and functions of the budding yeast Kar9 network consisting of the core +TIP proteins Kar9 (functional homologue of APC, MACF and SLAIN), Bim1 (orthologous to EB1) and Bik1 (orthologous to CLIP-170). A multivalent web of redundant interactions links the three +TIPs together to form a '+TIP body' at the end of chosen microtubules. This body behaves as a liquid condensate that allows it to persist on both growing and shrinking microtubule ends, and to function as a mechanical coupling device between microtubules and actin cables. Our study identifies nanometre-scale condensates as effective cellular structures and underlines the power of dissecting the web of low-affinity interactions driving liquid-liquid phase separation in order to establish how condensation processes support cell function.


Microtubule-Associated Proteins , Microtubules , Cell Division , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Saccharomyces cerevisiae
3.
Structure ; 29(11): 1266-1278.e4, 2021 11 04.
Article En | MEDLINE | ID: mdl-34237274

In many eukaryotes, coordination of chromosome segregation with cell cleavage relies on the patterned interaction of specific microtubules with actin filaments through dedicated microtubule plus-end tracking proteins (+TIPs). However, how these +TIPs are spatially controlled is unclear. The yeast +TIP Kar9 drives one of the spindle aster microtubules along actin cables to align the mitotic spindle with the axis of cell division. Here, we report the crystal structure of Kar9's folded domain, revealing spectrin repeats reminiscent of the +TIPs MACF/ACF7/Shot and PRC1/Ase1. Point mutations abrogating spectrin-repeat-mediated dimerization of Kar9 reduced and randomized Kar9 distribution to microtubule tips, and impaired spindle positioning. Six Cdk1 sites surround the Kar9 dimerization interface. Their phosphomimetic substitution inhibited Kar9 dimerization, displaced Kar9 from microtubules, and affected its interaction with the myosin motor Myo2. Our results provide molecular-level understanding on how diverse cell types may regulate and pattern microtubule-actin interactions to orchestrate their divisions.


Microtubules/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Spindle Apparatus/metabolism , Actin Cytoskeleton/metabolism , Myosin Heavy Chains/metabolism , Protein Conformation
4.
Soft Matter ; 17(6): 1655-1662, 2021 Feb 19.
Article En | MEDLINE | ID: mdl-33367441

Phase separated macromolecules play essential roles in many biological and synthetic systems. Physical characterization of these systems can be challenging because of limited sample volumes, particularly for phase-separated proteins. Here, we demonstrate that a classic method for measuring the surface tension of liquid droplets, based on the analysis of the shape of a sessile droplet, can be effectively scaled down to measure the interfacial tension between a macromolecule-rich droplet phase and its co-existing macromolecule-poor continuous phase. The connection between droplet shape and surface tension relies on the density difference between the droplet and its surroundings. This can be determined with small sample volumes in the same setup by measuring the droplet sedimentation velocity. An interactive MATLAB script for extracting the capillary length from a droplet image is included in the ESI.


Polymers , Surface Tension
...