Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Science ; 381(6656): 454, 2023 Jul 28.
Article En | MEDLINE | ID: mdl-37499004
2.
Gut Microbes ; 15(1): 2223330, 2023 12 31.
Article En | MEDLINE | ID: mdl-37317027

Individuals with nonalcoholic fatty liver disease (NAFLD) have an altered gut microbiota composition. Moreover, hepatic DNA methylation may be altered in the state of NAFLD. Using a fecal microbiota transplantation (FMT) intervention, we aimed to investigate whether a change in gut microbiota composition relates to altered liver DNA methylation in NAFLD. Moreover, we assessed whether plasma metabolite profiles altered by FMT relate to changes in liver DNA methylation. Twenty-one individuals with NAFLD underwent three 8-weekly vegan allogenic donor (n = 10) or autologous (n = 11) FMTs. We obtained hepatic DNA methylation profiles from paired liver biopsies of study participants before and after FMTs. We applied a multi-omics machine learning approach to identify changes in the gut microbiome, peripheral blood metabolome and liver DNA methylome, and analyzed cross-omics correlations. Vegan allogenic donor FMT compared to autologous FMT induced distinct differential changes in I) gut microbiota profiles, including increased abundance of Eubacterium siraeum and potential probiotic Blautia wexlerae; II) plasma metabolites, including altered levels of phenylacetylcarnitine (PAC) and phenylacetylglutamine (PAG) both from gut-derived phenylacetic acid, and of several choline-derived long-chain acylcholines; and III) hepatic DNA methylation profiles, most importantly in Threonyl-TRNA Synthetase 1 (TARS) and Zinc finger protein 57 (ZFP57). Multi-omics analysis showed that Gemmiger formicillis and Firmicutes bacterium_CAG_170 positively correlated with both PAC and PAG. E siraeum negatively correlated with DNA methylation of cg16885113 in ZFP57. Alterations in gut microbiota composition by FMT caused widespread changes in plasma metabolites (e.g. PAC, PAG, and choline-derived metabolites) and liver DNA methylation profiles in individuals with NAFLD. These results indicate that FMTs might induce metaorganismal pathway changes, from the gut bacteria to the liver.


Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/therapy , Fecal Microbiota Transplantation , DNA Methylation , Multiomics , Choline
3.
iScience ; 25(12): 105683, 2022 Dec 22.
Article En | MEDLINE | ID: mdl-36561890

Obesity and diabetes are associated with inflammation and altered plasma levels of several metabolites, which may be involved in disease progression. Some metabolites can activate G protein-coupled receptors (GPCRs) expressed on immune cells where they can modulate metabolic inflammation. Here, we find that 3-hydroxydecanoate is enriched in the circulation of obese individuals with type 2 diabetes (T2D) compared with nondiabetic controls. Administration of 3-hydroxydecanoate to mice promotes immune cell recruitment to adipose tissue, which was associated with adipose inflammation and increased fasting insulin levels. Furthermore, we demonstrate that 3-hydroxydecanoate stimulates migration of primary human and mouse neutrophils, but not monocytes, through GPR84 and Gαi signaling in vitro. Our findings indicate that 3-hydroxydecanoate is a T2D-associated metabolite that increases inflammatory responses and may contribute to the chronic inflammation observed in diabetes.

4.
JHEP Rep ; 3(4): 100301, 2021 Aug.
Article En | MEDLINE | ID: mdl-34113839

Cellular senescence is a state of irreversible cell cycle arrest that has important physiological functions. However, cellular senescence is also a hallmark of ageing and has been associated with several pathological conditions. A wide range of factors including genotoxic stress, mitogens and inflammatory cytokines can induce senescence. Phenotypically, senescent cells are characterised by short telomeres, an enlarged nuclear area and damaged genomic and mitochondrial DNA. Secretion of proinflammatory proteins, also known as the senescence-associated secretory phenotype, is a characteristic of senescent cells that is thought to be the main contributor to their disease-inducing properties. In the past decade, the role of cellular senescence in the development of non-alcoholic fatty liver disease (NAFLD) and its progression towards non-alcoholic steatohepatitis (NASH) has garnered significant interest. Until recently, it was suggested that hepatocyte cellular senescence is a mere consequence of the metabolic dysregulation and inflammatory phenomena in fatty liver disease. However, recent work in rodents has suggested that senescence may be a causal factor in NAFLD development. Although causality is yet to be established in humans, current evidence suggests that targeting senescent cells has therapeutic potential for NAFLD. We aim to provide insights into the quality of the evidence supporting a causal role of cellular senescence in the development of NAFLD in rodents and humans. We will elaborate on key cellular and molecular features of senescence and discuss the efficacy and safety of novel senolytic drugs for the treatment or prevention of NAFLD.

...