Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Saudi Pharm J ; 31(12): 101832, 2023 Dec.
Article En | MEDLINE | ID: mdl-38125951

In the current work, cytotoxicity and genotoxicity of different organoselenium compounds were examined using Trypan blue exclusion and alkaline comet assays with silver staining respectively. Leukocytes were subjected to a 3-hour incubation with organoselenium compounds at concentrations of 1, 5, 10, 25, 50, and 75 µM, or with the control vehicle (DMSO), at a temperature of 37 °C. The viability of the cells was evaluated using the Trypan blue exclusion method, while DNA damage was analyzed through the alkaline comet assay with silver staining. The exposure of leukocytes to different organoselenium compounds including i.e. (Z)-N-(pyridin-2-ylmethylene)-1-(2-((2-(1-((E)-pyridin-2-ylmethyleneamino)ethyl)phenyl)diselanyl)phenyl)ethanamine (C1), 2,2'(1Z,1'E)-(1,1'-(2,2'-diselanediylbis(2,1-phenylene))bis(ethane-1,1-diyl)) bis(azan-1-yl-1-ylidene)bis -methan-1-yl-1-ylidene)diphenol (C2), and dinaphthyl diselenide (NapSe)2, At concentrations ranging from 1 to 5 µM, no significant DNA damage was observed, as indicated by the absence of a noteworthy increase in the Damage Index (DI). Our results suggest that the organoselenium selenium compounds tested were not genotoxic and cytotoxic to human leukocytes in vitro at lower concentration. This study offers further insights into the genotoxicity profile of these organochalcogens in human leukocytes. Their genotoxicity and cytotoxicity effects at higher concentration are probably mediated through reactive oxygen species generation and their ability to catalyze thiol oxidation.

2.
Biomed Pharmacother ; 89: 605-616, 2017 May.
Article En | MEDLINE | ID: mdl-28267671

Diet is a key component for development and longevity of organisms. Here, the fruit fly was used to evaluate the detrimental effects caused by consumption of high-sucrose diets (HSD), namely phenotypic responses linked to insulin signaling and oxidative stress. The protective effects of extracts from medicinal plants Syzygium cumini and Bauhinia forficata were investigated. HSD intake (15% and 30%) delayed the time to pupation and reduced the number of white pupae. In adult flies, the intake of diets was associated with mortality and increased levels of glucose+trehalose, triacylglycerols and hydrogen peroxide. Indeed, 30% HSD induced body-weight loss, mitochondrial dysfunction and changes in acetylcholinesterase, δ-aminolevulinate dehydratase and antioxidant enzymes activity. Catalase, superoxide dismutase, keap1, HSP70, dILP-5 and Insulin receptor mRNA levels were over-expressed in flies emerged from 30% HSD. The extract treatments blunted the developmental alterations elicited by diets. Syzygium cumini extract was more efficient than B. forficata in reducing hyperglycaemia, redox disturbances and the changes in mRNA expression of insulin receptor.


Bauhinia/chemistry , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/prevention & control , Dietary Sucrose/adverse effects , Hypoglycemic Agents/therapeutic use , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Syzygium/chemistry , Animals , Antioxidants/metabolism , Body Weight/drug effects , Carbohydrate Metabolism/drug effects , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2/metabolism , Diet , Drosophila melanogaster , Hydrogen Peroxide/metabolism , Insulin/metabolism , Insulin/physiology , Plant Leaves/chemistry , Receptor, Insulin/biosynthesis , Receptor, Insulin/genetics , Signal Transduction/drug effects
3.
Arch Pharm Res ; 2015 Jul 10.
Article En | MEDLINE | ID: mdl-26160066

Solanum anguivi fruit saponin has antidiabetic property via interference with cellular energy metabolism and inhibition of reactive oxygen species (ROS) generation. In the current study, brain specific in vitro anti-oxidant role of S. anguivi saponin was investigated in the P2 synaptosomal fraction of rat brain. Using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay, S. anguivi saponin concentration- dependently (10-200 µg/ml) reversed Fe2+ and sodium nitroprusside- induced decrease in mitochondrial activity via inhibition of ROS production, ROS-induced oxidation of protein and non-protein thiol-containing molecules and lipid peroxidation as measured by thiobarbituric acid reactive substances levels. Conclusively, S. anguivi fruit saponin represents a class of natural compounds with the ability to reverse synaptosomal disruption, loss of mitochondrial integrity and function often associated with the progression of Huntington's disease, Alzheimer disease, Parkinson disease and amyotrophic lateral sclerosis diseases.

4.
PeerJ ; 2: e290, 2014.
Article En | MEDLINE | ID: mdl-24711962

Organoselenium compounds have been pointed out as therapeutic agents. In contrast, the potential therapeutic aspects of tellurides have not yet been demonstrated. The present study evaluated the comparative toxicological effects of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 in mice after in vivo administration. Genotoxicity (as determined by comet assay) and mutagenicicity were used as end-points of toxicity. Subcutaneous administration of high doses of (PhSe)2 or (PhTe)2 (500 µmol/kg) caused distinct genotoxicity in mice. (PhSe)2 significantly decreased the DNA damage index after 48 and 96 h of its injection (p < 0.05). In contrast, (PhTe) caused a significant increase in DNA damage (p < 0.05) after 48 and 96 h of intoxication. (PhSe)2 did not cause mutagenicity but (PhTe)2 increased the micronuclei frequency, indicating its mutagenic potential. The present study demonstrated that acute in vivo exposure to ditelluride caused genotoxicity in mice, which may be associated with pro-oxidant effects of diphenyl ditelluride. In addition, the use of this compound and possibly other related tellurides must be carefully controlled.

5.
Biomed Res Int ; 2013: 537279, 2013.
Article En | MEDLINE | ID: mdl-24350274

Organochalcogens, particularly ebselen, have been used in experimental and clinical trials with borderline efficacy. (PhSe)2 and (PhTe)2 are the simplest of the diaryl dichalcogenides and share with ebselen pharmacological properties. In view of the concerns with the use of mammals in studies and the great number of new organochalcogens with potential pharmacological properties that have been synthesized, it becomes important to develop screening protocols to select compounds that are worth to be tested in vivo. This study investigated the possible use of isolated human white cells as a preliminary model to test organochalcogen toxicity. Human leucocytes were exposed to 5-50 µM of ebselen, (PhSe)2, or (PhTe)2. All compounds were cytotoxic (Trypan's Blue exclusion) at the highest concentration tested, and Ebselen was the most toxic. Ebselen and (PhSe)2 were genotoxic (Comet Assay) only at 50 µM, and (PhTe)2 at 5-50 µM. Here, the acute cytotoxicity did not correspond with in vivo toxicity of the compounds. But the genotoxicity was in the same order of the in vivo toxicity to mice. These results indicate that in vitro genotoxicity in white blood cells should be considered as an early step in the investigation of potential toxicity of organochalcogens.


Azoles/pharmacology , Benzene Derivatives/pharmacology , Leukocytes/drug effects , Mutagens/pharmacology , Organometallic Compounds/pharmacology , Organoselenium Compounds/pharmacology , Humans , Isoindoles , Mutagenicity Tests/methods
6.
Magnes Res ; 26(1): 32-40, 2013.
Article En | MEDLINE | ID: mdl-23657239

This study was designed to develop a rodent model of hydrochlorothiazide (HCTZ) toxicity by associating its intake with a high-fat (HF) diet. Rats were fed for 16 weeks with a control diet or with an HF diet supplemented or not with different doses of HCTZ. HCTZ, in a similar way to the HF diet, caused a significant increase in fructosamine levels. HCTZ and HF diet intake caused a significant reduction in magnesium and potassium levels, as well as an increase in lipid peroxidation and vitamin C in liver. Importantly, negative correlations were found between magnesium and glucose levels as well as between magnesium and fructosamine levels. The association between HCTZ and the HF diet caused additional worsening of biochemical parameters related to glucose homeostasis, and further increased hepatic oxidative stress. Our results suggest that chronic intake of HCTZ or an HF diet causes metabolic changes that are consistent with the development of insulin resistance. In addition, the association of an HF diet and HCTZ treatment can exacerbate some of these biochemical alterations, suggesting that this model might be useful for studying HCTZ metabolic toxicity.


Diet, High-Fat , Hydrochlorothiazide/pharmacology , Liver/pathology , Magnesium/blood , Oxidative Stress/drug effects , Animals , Ascorbic Acid/metabolism , Body Weight/drug effects , Fructosamine/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Male , Potassium/blood , Protein Carbonylation/drug effects , Rats , Rats, Wistar , Thiobarbituric Acid Reactive Substances/metabolism
7.
Mol Cell Biochem ; 371(1-2): 97-104, 2012 Dec.
Article En | MEDLINE | ID: mdl-22983825

Diorganoyl dichalcogenide compouds can have antioxidant activity in different in vitro and in vivo models. Here, we have compared the potential antioxidant activity of 1-dinaphthyl diselenide (1-NapSe)(2), 2-dinaphthyl diselenide (2-NapSe)(2), 1-dinaphthyl distelluride (1-NapTe)(2), 2-dinaphthyl ditelluride (2-NapTe)(2) with their well-studied analogs diphenyl diselenide ((PhSe)(2)) and diphenyl telluride ((PhTe)(2)). (PhSe)(2), (PhTe)(2), and naphthalene analogs-inhibited Fe(II)-induced lipid peroxidation, catalytically decomposed hydrogen peroxide and oxidized thiols, such as dithiothreitol (DTT), Cysteine (CYS), dimercaptopropionic acid (DMPS), and thiophenol (PhSH). (PhSe)(2) was the less potent of the tested compounds against Fe(II)-induced lipid peroxidation in brain homogenates and the change in the organic moiety from an aryl to naphthyl group increased considerably the antioxidant potency of diselenide compounds. However, the change from aryl to naphthyl had little effect on the thio-peroxidase-like activity of diorganoyl dichalcogenides. These results suggest that minor changes in the organic moiety of aromatic diselenide compounds can modify profoundly their capacity to inhibit iron-induced lipid peroxidation. The pharmacological properties of organochalcogens are thought to be linked to their capacity of modulating oxidative stress. Consequently, it becomes important to explore the toxicological properties of dinaphthyl diselenides and ditellurides.


Antioxidants/pharmacology , Benzene Derivatives/pharmacology , Naphthalenes/pharmacology , Organometallic Compounds/pharmacology , Organoselenium Compounds/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Dose-Response Relationship, Drug , Lipid Peroxidation/drug effects , Male , Oxidation-Reduction , Oxidative Stress , Peroxidase/metabolism , Phenols/pharmacology , Rats , Rats, Wistar , Sulfhydryl Compounds/pharmacology , Thiobarbituric Acid Reactive Substances/metabolism
8.
Biol Trace Elem Res ; 147(1-3): 309-14, 2012 Jun.
Article En | MEDLINE | ID: mdl-22278096

It is widely accepted that oxidative stress plays a central role in alcohol-induced pathogenesis. The protective effect of binaphthyl diselenide (NapSe)2 was investigated in ethanol (Etoh)-induced brain injury. Thirty male adult Wistar rats were divided randomly into five groups of six animals each and treated as follows: (1) The control group received the vehicle (soy bean oil, 1 mL/kg, p.o.). (2) Ethanol group of animals was administered with ethanol (70% v/v, 2 mL/kg, p.o.). (3) (NapSe)2 1 mg/kg, 1 mL/kg plus ethanol 70% (v/v, 2 mL/kg, p.o. (5) (NapSe)2 10 mg/kg, 1 mL/kg) plus ethanol 70% (v/v, 2 mL/kg, p.o). After acute treatment, all rats were sacrificed by decapitation. Evidence for oxidative stress in rat brain was obtained from the observed levels of thiobarbituric acid reactive species, of non-protein thiol (NPSH) groups, and of ascorbic acid, as well as from the activities of catalase (CAT) and of superoxide dismutase (SOD). (NapSe)2 compensated the deficits in the antioxidant defense mechanisms (CAT, SOD, NPSH, and ascorbic acid), and suppressed lipid peroxidation in rat brain resulting from Etoh administration. It was concluded that ethanol exposure causes alterations in the antioxidant defense system and induces oxidative stress in rat brain. (NaPSe)2 at 5 mg/kg restored the antioxidant defenses in rat brain and mitigated the toxic effects of alcohol, suggesting that could be used as a potential therapeutic agent for alcohol-induced oxidative damage in rat brain.


Antioxidants/pharmacology , Ethanol/toxicity , Organoselenium Compounds/pharmacology , Oxidative Stress/drug effects , Animals , Ascorbic Acid/metabolism , Brain/drug effects , Brain/metabolism , Central Nervous System Depressants/toxicity , Glutathione Peroxidase/metabolism , Lipid Peroxidation/drug effects , Male , Random Allocation , Rats , Rats, Wistar , Sulfhydryl Compounds/metabolism , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
9.
Arch Toxicol ; 85(1): 43-9, 2011 Jan.
Article En | MEDLINE | ID: mdl-20490464

(S)-dimethyl 2-(3-(phenyltellanyl) propanamido) succinate, a new telluroamino acid derivative, showed remarkable glutathione peroxidase (GPx)-like activity, attesting to its antioxidant potential. However, the stability and toxicity of this compound has not yet been investigated. The present study was designed to investigate the pharmacological/toxicological properties of this compound in vitro and in vivo. In vitro, this telluroamino acid derivative significantly blocked spontaneous and Fe(II)-induced TBARS formation in rat brain homogenates, demonstrating high antioxidant activity. In addition, it exhibited GPx-like and thiol oxidase activities. However, when subcutaneously administered to mice, (S)-dimethyl 2-(3-(phenyltellanyl) propanamido) succinate indicated genotoxic and mutagenic effect in adult male mice. Considering the differential effects of (S)-dimethyl 2-(3-(phenyltellanyl) propanamido) succinate in vitro and in vivo, additional experiments are needed to elucidate the mechanism(s) by which this compound displays its antioxidant/toxicological effects.


Antioxidants/pharmacology , Aspartic Acid/analogs & derivatives , Succinates/pharmacology , Administration, Oral , Analysis of Variance , Animals , Aspartic Acid/toxicity , Comet Assay , DNA Damage , Ferrous Compounds/metabolism , Glutathione Peroxidase/metabolism , Lethal Dose 50 , Male , Mice , Organometallic Compounds/metabolism , Organometallic Compounds/pharmacology , Organometallic Compounds/toxicity , Rats , Rats, Wistar , Succinates/toxicity , Tellurium/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
...