Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Cancers (Basel) ; 12(1)2019 Dec 20.
Article En | MEDLINE | ID: mdl-31861875

K-Ras is the most prominent driver of oncogenesis and no effective K-Ras inhibitors have been established despite decades of intensive research. Identifying new K-Ras-binding proteins and their interaction domains offers the opportunity for defining new approaches in tackling oncogenic K-Ras. We have identified Galectin-8 as a novel, direct binding protein for K-Ras4B by mass spectrometry analyses and protein interaction studies. Galectin-8 is a tandem-repeat Galectin and it is widely expressed in lung and pancreatic carcinoma cells. siRNA-mediated depletion of Galectin-8 resulted in increased K-Ras4B content and ERK1/2 activity in lung and pancreatic carcinoma cells. Moreover, cell migration and cell proliferation were inhibited by the depletion of Galectin-8. The K-Ras4B-Galectin-8 interaction is indispensably associated with the farnesylation of K-Ras4B. The lysine-rich polybasic domain (PBD), a region that is unique for K-Ras4B as compared to H- and N-Ras, stabilizes the interaction and accounts for the specificity. Binding assays with the deletion mutants of Galectin-8, comprising either of the two carbohydrate recognition domains (CRD), revealed that K-Ras4B only interacts with the N-CRD, but not with the C-CRD. Structural modeling uncovers a potential binding pocket for the hydrophobic farnesyl chain of K-Ras4B and a cluster of negatively charged amino acids for interaction with the positively charged lysine residues in the N-CRD. Our results demonstrate that Galectin-8 is a new binding partner for K-Ras4B and it interacts via the N-CRD with the farnesylated PBD of K-Ras, thereby modulating the K-Ras effector pathways as well as cell proliferation and migration.

2.
Cytoskeleton (Hoboken) ; 74(3): 143-158, 2017 Mar.
Article En | MEDLINE | ID: mdl-28164467

Neurons are highly differentiated cells responsible for the conduction and transmission of information in the nervous system. The proper function of a neuron relies on the compartmentalization of their intracellular domains. Differentiated neuroblastoma cells have been extensively used to study and understand the physiology and cell biology of neuronal cells. Here, we show that differentiation of N1E-115 neuroblastoma cells is more pronounced upon exposure of a chemical analog of cyclic AMP (cAMP), db-cAMP. We next analysed the expression of key microtubule-regulating proteins in differentiated cells and the expression and activation of key cAMP players such as EPAC, PKA and AKAP79/150. Most of the microtubule-promoting factors were up regulated during differentiation of N1E-115 cells, while microtubule-destabilizing proteins were down regulated. We observed an increase in tubulin post-translational modifications related to microtubule stability. As expected, db-cAMP increased PKA- and EPAC-dependent signalling. Consistently, pharmacological modulation of EPAC activity instructed cell differentiation, number of neurites, and neurite length in N1E-115 cells. Moreover, disruption of the PKA-AKAP interaction reduced these morphometric parameters. Interestingly, PKA and EPAC act synergistically to induce neuronal differentiation in N1E-115. Altogether these results show that the changes observed in the differentiation of N1E-115 cells proceed by regulating several microtubule-stabilizing factors, and the acquisition of a neuronal phenotype is a process involving concerted although independent functions of EPAC and PKA.


Cyclic AMP-Dependent Protein Kinases/metabolism , Microtubule Proteins/metabolism , Neuroblastoma/genetics , Neuroblastoma/metabolism , Cell Differentiation , Humans , Signal Transduction
...