Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Rev Rep ; 19(7): 2510-2524, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37548806

RESUMEN

The intricate nature of the human brain and the limitations of existing model systems to study molecular and cellular causes of neuropsychiatric disorders represent a major challenge for basic research. The promising progress in patient-derived stem cell technology and in our knowledge on the role of the brain oxytocin (OXT) system in health and disease offer new possibilities in that direction. In this study, the rat hair follicle stem cells (HFSCs) were isolated and expanded in vitro. The expression of oxytocin receptors (OXTR) was evaluated in these cells. The cellular viability was assessed 12 h post stimulation with OXT. The activation of OXTR-coupled intracellular signaling cascades, following OXT treatment was determined. Also, the influence of OXT on neurite outgrowth and cytoskeletal rearrangement were defined. The assessment of OXTR protein expression revealed this receptor is expressed abundantly in HFSCs. As evidenced by the cell viability assay, no adverse or cytotoxic effects were detected following 12 h treatment with different concentrations of OXT. Moreover, OXTR stimulation by OXT resulted in ERK1/2, CREB, and eEF2 activation, neurite length alterations, and cytoskeletal rearrangements that reveal the functionality of this receptor in HFSCs. Here, we introduced the rat HFSCs as an easy-to-obtain stem cell model that express functional OXTR. This cell-based model can contribute to our understanding of the progression and treatment of neuropsychiatric disorders with oxytocinergic system deficiency.

2.
Annu Rev Pharmacol Toxicol ; 62: 25-53, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33606962

RESUMEN

In December 2019, a novel coronavirus crossed species barriers to infect humans and was effectively transmitted from person to person, leading to a worldwide pandemic. Development of effective clinical interventions, including vaccines and antiviral drugs that could prevent or limit theburden or transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health priority. It is thus of utmost importance to assess possible therapeutic strategies against SARS-CoV-2 using experimental models that recapitulate aspects of the human disease. Here, we review available models currently being developed and used to study SARS-CoV-2 infection and highlight their application to screen potential therapeutic approaches, including repurposed antiviral drugs and vaccines. Each identified model provides a valuable insight into SARS-CoV-2 cellular tropism, replication kinetics, and cell damage that could ultimately enhance understanding of SARS-CoV-2 pathogenesis and protective immunity.


Asunto(s)
COVID-19 , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Modelos Teóricos , Pandemias , SARS-CoV-2
3.
Biol Psychiatry ; 85(10): 802-811, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30826070

RESUMEN

BACKGROUND: The neuropeptide oxytocin (OXT) mediates its actions, including anxiolysis, via its G protein-coupled OXT receptor. Within the paraventricular nucleus of the hypothalamus (PVN), OXT-induced anxiolysis is mediated, at least in part, via activation of the mitogen-activated protein kinase pathway following calcium influx through transient receptor potential cation channel subfamily V member 2 channels. In the periphery, OXT activates eukaryotic elongation factor 2 (eEF2), an essential mediator of protein synthesis. METHODS: In order to study whether OXT activates eEF2 also in neurons to exert its anxiolytic properties in the PVN, we performed in vivo and cell culture experiments. RESULTS: We demonstrate that OXT, in a protein kinase C-dependent manner, activates eEF2 both in a hypothalamic cell line and in vivo within the PVN. Next, we reveal that OXT stimulates de novo protein synthesis, while inhibition of protein synthesis within the PVN prevents the anxiolytic effect of OXT in male rats. Moreover, activation of eEF2 within the PVN conveyed an anxiolytic effect supporting a role of OXT-induced eEF2 activation and protein synthesis for its anxiolysis. Finally, we show that one of the proteins that is upregulated by OXT is the neuropeptide Y receptor 5. Infusion of a specific neuropeptide Y receptor 5 agonist into the PVN consequently led to decreased anxiety-related behavior, while pretreatment with a neuropeptide Y receptor 5 antagonist prevented the anxiolytic effect of OXT. CONCLUSIONS: Taken together, these results show that OXT recruits several intracellular signaling cascades to induce protein synthesis, which mediates the anxiolytic effects of OXT within the PVN and suggests that eEF2 represents a novel target for anxiety-related disorders.


Asunto(s)
Ansiolíticos/metabolismo , Ansiedad/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Animales , Ansiolíticos/administración & dosificación , Células Cultivadas , Regulación hacia Abajo , Sistema de Señalización de MAP Quinasas , Masculino , Oxitocina/administración & dosificación , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Proteína Quinasa C/metabolismo , Ratas Wistar , Receptores de Neuropéptido Y/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...