Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Gen Comp Endocrinol ; 350: 114465, 2024 May 01.
Article En | MEDLINE | ID: mdl-38336122

We compared the endocrine status of the pituitary-gonad axis of wild and captive-reared greater amberjack (Seriola dumerili) during the reproductive cycle (April - July), reporting on the expression and release of the two gonadotropins for the first time in the Mediterranean Sea. Ovaries from wild females were characterized histologically as DEVELOPING in early May and SPAWNING capable in late May-July, the latter having a 3 to 4-fold higher gonadosomatic index (GSI). SPAWNING capable wild females exhibited an increase in pituitary follicle stimulating hormone (Fsh) content, plasma testosterone (T) and 17,20ß-dihydroxy-4-pregnen-3-one (17,20ß-P), while almost a 10-fold increase was observed in pituitary luteinizing hormone (Lh) content. An increasing trend of plasma 17ß-estradiol (E2) was also recorded between the two reproductive stages in wild females. Captive-reared females sampled during the reproductive cycle exhibited two additional reproductive categories, with REGRESSED females having extensive follicular atresia and fish in the REGENERATING stage having only primary oocytes in their ovaries. Pituitary content of Fsh and Lh, fshb and lhb expression and plasma levels of Fsh and Lh remained unchanged among the four reproductive stages in captive females, in contrast with plasma E2 and T that decreased in the REGENERATING stage, and 17,20ß-P which increased after the DEVELOPING stage. In general, no significant hormonal differences were recorded between captive-reared and wild DEVELOPING females, in contrast to SPAWNING capable females, where pituitary Lh content, plasma Fsh and T were found to be lower in females in captivity. Overall, the captive females lagged behind in reproductive development compared to the wild ones and this was perhaps related to the multiple handling of the sea cages where all the sampled fish were maintained. Between wild males in the DEVELOPING and SPAWNING capable stages, pituitary Lh content, plasma T and 17,20ß-P, and GSI exhibited 3 to 4-fold increases, while an increasing trend of pituitary Fsh content, lhb expression levels and plasma 11-ketotestosterone (11-KT) was also observed, and an opposite trend was observed in plasma Lh. Captive males were allocated to one more category, with REGRESSED individuals having no spermatogenic capacity. During the SPAWNING capable phase, almost all measured parameters were lower in captive males compared to wild ones. More importantly, captive males showed significant differences from their wild counterparts throughout the reproductive season, starting already from the DEVELOPING stage. Therefore, it appears that captivity already exerted negative effects in males prior to the onset of the study and the multiple handling of the cage where sampled fish were reared. Overall, the present study demonstrated that female greater amberjack do undergo full vitellogenesis in captivity, albeit with some dysfunctions that may be related to the husbandry of the experiment, while males, on the other hand, may be more seriously affected by captivity even before the onset of the study.


Follicular Atresia , Perciformes , Animals , Male , Female , Gonadotropins/metabolism , Luteinizing Hormone/metabolism , Reproduction , Follicle Stimulating Hormone/metabolism , Perciformes/metabolism , Pituitary Gland/metabolism , Fishes/metabolism
2.
Int J Mol Sci ; 24(9)2023 May 05.
Article En | MEDLINE | ID: mdl-37175982

In recent years, flathead grey mullets (Mugil cephalus) cultured in Eilat (Israel) have been highly affected by Vibrio harveyi, showing neurological signs such as uncoordinated circular swimming followed by high mortality rates. Despite the advances in and different approaches to control vibriosis associated with Vibrio harveyi, including commercial vaccines, most of them have not succeeded in long-term protection. In this study, we evaluated the effectiveness, long-term protection, and antibody production of three vaccine preparations: heat-killed bacteria (HKB), membrane proteins denaturation (BME PROT), and internal proteins (INT PROT) developed specifically against Vibrio harveyi for grey mullets. Our results show that fish immunized with heat-killed bacteria emulsified with adjuvant presented the most effective and long-lasting protection against the bacterium, and a cross-protection against other bacteria from the harveyi clade. The effectiveness of each immunization treatment correlated with the levels of specific antibody production against Vibrio harveyi in the serum of the immunized fish.


Fish Diseases , Smegmamorpha , Vibrio Infections , Vibrio , Animals , Bacterial Vaccines , Vibrio Infections/prevention & control , Vibrio Infections/veterinary , Immunization
3.
G3 (Bethesda) ; 11(2)2021 02 09.
Article En | MEDLINE | ID: mdl-33589926

Various master key regulators (MKRs) that control a binary switch of sex determination (SD) have been found in fish; these provide an excellent model for the study of vertebrate genetic SD. The SD region in flathead grey mullet has been previously mapped to a 1 Mbp region harboring 27 genes, of which one is follicle-stimulating hormone receptor (fshr). Although this gene is involved in gonad differentiation and function, it has not been considered as an MKR of SD. We systematically investigated polymorphism in mullet fshr using DNA shotgun sequences, and compared them between males and females. Capable of encoding nonconservative amino acid substitutions, c.1732G>A and c.1759T>G exhibited association with sex on a population level (N = 83; P ≤ 6.7 × 10-19). Hence, 1732 A and 1759 G represent a male-specific haplotype of the gene, designated as "fshry." Additional flanking SNPs showed a weaker degree of association with sex, delimiting the SD critical region to 143 nucleotides on exon 14. Lack of homozygotes for fshry, and the resulting divergence from Hardy-Weinberg equilibrium (N = 170; P ≤ 3.9 × 10-5), were compatible with a male heterogametic model (XY/XX). Capable of replacing a phenylalanine with valine, c.1759T>G alters a conserved position across the sixth transmembrane domain of vertebrate FSHRs. Amino acid substitutions in this position in vertebrates are frequently associated with constant receptor activation and consequently with FSH/FSHR signaling alteration; thus, indicating a potential role of fshr as an MKR of SD.


Receptors, FSH , Sex Determination Processes , Smegmamorpha , Animals , Female , Follicle Stimulating Hormone , Haplotypes , Male , Polymorphism, Single Nucleotide , Receptors, FSH/genetics
4.
Article En | MEDLINE | ID: mdl-30439559

A study comprised of two trials determined the effects of water turbidity produced by live microalgae and inert clay particles on the larval rearing of grey mullet (Mugil cephalus). Trial 1 evaluated the effect of microalgae produced water turbidity on grey mullet larval performance and digestive tract (DT) enzyme ontogeny. Two microalgae (Nannochloropsis oculata and Isochrysis galbana) water turbidity levels (0.76 and 1.20 NTU, respectively) and a non-microalgae control (0.26 NTU) were investigated on 2 to 23 dph grey mullet larvae. The higher turbidity (1.2 NTU) larvae (5 dph) consumed markedly (P < .05) more rotifers than other treatment fish, independently of the microalgae type. There was no clear effect of the turbidity treatments on DT enzyme ontogeny. However, in all treatments lipase and alkaline proteases appeared to be modulated by the diet. Alkaline phosphatase activity was ca. 8 times higher and α-amylase activity increased 5.3 times in 79 dph fish compared to 40 dph individuals. The ratio of alkaline phosphatase and leucine-alanine aminopeptidase indicated gut maturation occurred around 61 dph. Trial 2 compared the most effective N.occulata produced turbidity level (1.2 NTU) with the identical water turbidity produced by inert clay on larval performance. M. cephalus larvae exposed to high algal turbidity demonstrated superior performance (P < .05), in terms of rotifer ingestion, dry weight gain and survival, compared to cohorts reared under the clay treatment and the lower microalgae produced turbidity. These findings suggested that water algal turbidity is not the dominant factor determining improved grey mullet larval performance.


Digestive System/enzymology , Enzymes/classification , Nephelometry and Turbidimetry , Rotifera , Smegmamorpha/growth & development , Animals , Diet , Enzymes/metabolism , Female , Larva/physiology , Male
5.
Gen Comp Endocrinol ; 194: 10-23, 2013 Dec 01.
Article En | MEDLINE | ID: mdl-23973326

As part of the endeavor aiming at the domestication of Atlantic bluefin tuna (BFT; Thunnus thynnus), first sexual maturity in captivity was studied by documenting its occurrence and by characterizing the key hormones of the reproductive axis: follicle stimulating hormone (FSH) and luteinizing hormone (LH). The full length sequence encoding for the related hormone ß-subunits, bftFSHß and bftLHß, were determined, revealing two bftFSHß mRNA variants, differing in their 5' untranslated region. A quantitative immuno-dot-blot assay to measure pituitary FSH content in BFT was developed and validated enabling, for the first time in this species, data sets for both LH and FSH to be compared. The expression and accumulation patterns of LH in the pituitary showed a steady increase of this hormone, concomitant with fish age, reaching higher levels in adult females compared to males of the same age class. Conversely, the pituitary FSH levels were elevated only in 2Y and adult fish. The pituitary FSH to LH ratio was consistently higher (>1) in immature than in maturing or pubertal fish, resembling the situation in mammals. Nevertheless, the results suggest that a rise in the LH storage level above a minimum threshold may be an indicator of the onset of puberty in BFT females. The higher pituitary LH levels in adult females over males may further support this notion. In contrast three year-old (3Y) males were pubertal while cognate females were still immature. However, it is not yet clear whether the advanced puberty in the 3Y males was a general feature typifying wild BFT populations or was induced by the culture conditions. Future studies testing the effects of captivity and hormonal treatments on precocious maturity may allow for improved handling of this species in a controlled environment which would lead to more cost-efficient farming.


Follicle Stimulating Hormone/metabolism , Luteinizing Hormone/metabolism , RNA, Messenger/metabolism , Tuna/growth & development , Tuna/metabolism , Animals , Female , Male
...