Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article En | MEDLINE | ID: mdl-37569552

Novel magnetic nanocomposite materials based on Fe3O4 nanoparticles coated with iron and silica glycerolates (MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc) were obtained. The synthesized nanocomposites were characterized using TEM, XRD, TGA, VMS, Mössbauer and IR spectroscopy. The amount of iron and silica glycerolates in the nanocomposites was calculated from the Mössbauer spectroscopy, ICP AES and C,H-elemental analysis. Thus, it has been shown that the distribution of Fe in the shell and core for MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc is 27:73 and 32:68, respectively. The synthesized nanocomposites had high specific magnetization values and a high magnetic response to the alternating magnetic field. The hydrolysis of shells based on Fe(III)Glyc and Fe(III)/SiGlyc in aqueous media has been studied. It has been demonstrated that, while the iron glycerolates shell of MNP@Fe(III)Glyc is resistant to hydrolysis, the silica glycerolates shell of MNP@Fe(III)/SiGlyc is rather labile and hydrolyzed by 76.4% in 24 h at 25 °C. The synthesized materials did not show cytotoxicity in in vitro experiments (MTT-assay). The data obtained can be used in the design of materials for controlled-release drug delivery.

2.
Colloids Surf B Biointerfaces ; 190: 110879, 2020 Jun.
Article En | MEDLINE | ID: mdl-32135495

The efficiency of magnetic labeling with L-Lys-modified Fe3O4 magnetic nanoparticles (MNPs) and the stability of magnetization of rat adipose-derived mesenchymal stem cells, lineage-negative (Lin(-)) hematopoietic progenitor cells from mouse bone marrow and human leukemia K562 cells were studied. For this purpose, covalent modification of MNPs with 3-aminopropylsilane and N-di-Fmoc-L-lysine followed by removal of N-protecting groups was carried out. Since the degree of hydroxylation of the surface of the starting nanoparticles plays a crucial role in the silanization reaction and the possibility of obtaining stable colloidal solutions. In present work we for the first time performed a comparative qualitative and quantitative evaluation of the number of adsorbed water molecules and hydroxyl groups on the surface of chemically and physically obtained Fe3O4 MNPs using comprehensive FTIR spectroscopy and thermogravimetric analysis. The results obtained can be further used for magnetic labeling of cells in experiments in vitro and in vivo.


Ferric Compounds/chemistry , Lysine/chemistry , Magnetite Nanoparticles/chemistry , Animals , Cells, Cultured , Humans , K562 Cells , Magnetic Phenomena , Particle Size , Rats , Surface Properties
3.
Langmuir ; 34(11): 3449-3458, 2018 03 20.
Article En | MEDLINE | ID: mdl-29478322

The surface modification of Fe3O4-based magnetic nanoparticles (MNPs) with N-(phosphonomethyl)iminodiacetic acid (PMIDA) was studied, and the possibility of their use as magnetic resonance imaging contrast agents was shown. The effect of the added PMIDA amount, the reaction temperature and time on the degree of immobilization of this reagent on MNPs, and the hydrodynamic characteristics of their aqueous colloidal solutions have been systematically investigated for the first time. It has been shown that the optimum condition for the modification of MNPs is the reaction at 40 °C with an equimolar amount of PMIDA for 3.5 h. The modified MNPs were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric, and CHN elemental analyses. The dependence of the hydrodynamic characteristics of the MNP colloidal solutions on the concentration and pH of the medium was studied by the dynamic light scattering method. On the basis of the obtained data, we can assume that the PMIDA molecules are fixed on the surface of the MNPs as a monomolecular layer. The modified MNPs had good colloidal stability and high magnetic properties. The calculated relaxivities r2 and r1 were 341 and 102 mmol-1 s-1, respectively. The possibility of using colloidal solutions of PMIDA-modified MNPs as a T2 contrast agent for liver studies in vivo (at a dose of 0.6 mg kg-1) was demonstrated for the first time.


Contrast Media/pharmacology , Liver/metabolism , Magnetite Nanoparticles/chemistry , Phosphonoacetic Acid/analogs & derivatives , Animals , CHO Cells , Cell Line, Tumor , Contrast Media/chemistry , Contrast Media/toxicity , Cricetulus , Humans , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/toxicity , Male , Mesocricetus , Phosphonoacetic Acid/chemistry , Phosphonoacetic Acid/pharmacology , Phosphonoacetic Acid/toxicity , Temperature
...