Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113965, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38492217

RESUMEN

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibits stress granule assembly and interacts with G3BP1/2 via an ITFG motif, including residue F17, in the N protein. Prior studies examining the impact of the G3PB1-N interaction on SARS-CoV-2 replication have produced inconsistent findings, and the role of this interaction in pathogenesis is unknown. Here, we use structural and biochemical analyses to define the residues required for G3BP1-N interaction and structure-guided mutagenesis to selectively disrupt this interaction. We find that N-F17A mutation causes highly specific loss of interaction with G3BP1/2. SARS-CoV-2 N-F17A fails to inhibit stress granule assembly in cells, has decreased viral replication, and causes decreased pathology in vivo. Further mechanistic studies indicate that the N-F17-mediated G3BP1-N interaction promotes infection by limiting sequestration of viral genomic RNA (gRNA) into stress granules.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ADN Helicasas/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Virulencia , ARN Guía de Sistemas CRISPR-Cas , Proteínas de la Nucleocápside , Replicación Viral , ARN Viral/genética
2.
bioRxiv ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37425880

RESUMEN

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. G3BP1/2 are prominent interactors of the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the functional consequences of the G3BP1-N interaction in the context of viral infection remain unclear. Here we used structural and biochemical analyses to define the residues required for G3BP1-N interaction, followed by structure-guided mutagenesis of G3BP1 and N to selectively and reciprocally disrupt their interaction. We found that mutation of F17 within the N protein led to selective loss of interaction with G3BP1 and consequent failure of the N protein to disrupt stress granule assembly. Introduction of SARS-CoV-2 bearing an F17A mutation resulted in a significant decrease in viral replication and pathogenesis in vivo, indicating that the G3BP1-N interaction promotes infection by suppressing the ability of G3BP1 to form stress granules.

3.
mBio ; 14(4): e0088723, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37341495

RESUMEN

Obesity has been epidemiologically and empirically linked with more severe diseases upon influenza infection. To ameliorate severe disease, treatment with antivirals, such as the neuraminidase inhibitor oseltamivir, is suggested to begin within days of infection especially in high-risk hosts. However, this treatment can be poorly effective and may generate resistance variants within the treated host. Here, we hypothesized that obesity would reduce oseltamivir treatment effectiveness in the genetically obese mouse model. We demonstrated that oseltamivir treatment does not improve viral clearance in obese mice. While no traditional variants associated with oseltamivir resistance emerged, we did note that drug treatment failed to quench the viral population and did lead to phenotypic drug resistance in vitro. Together, these studies suggest that the unique pathogenesis and immune responses in obese mice could have implications for pharmaceutical interventions and the within-host dynamics of the influenza virus population. IMPORTANCE Influenza virus infections, while typically resolving within days to weeks, can turn critical, especially in high-risk populations. Prompt antiviral administration is crucial to mitigating these severe sequalae, yet concerns remain if antiviral treatment is effective in hosts with obesity. Here, we show that oseltamivir does not improve viral clearance in genetically obese or type I interferon receptor-deficient mice. This suggests a blunted immune response may impair oseltamivir efficacy and render a host more susceptible to severe disease. This study furthers our understanding of oseltamivir treatment dynamics both systemically and in the lungs of obese mice, as well as the consequences of oseltamivir treatment for the within-host emergence of drug-resistant variants.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Ratones , Animales , Humanos , Oseltamivir/uso terapéutico , Ratones Obesos , Gripe Humana/tratamiento farmacológico , Antivirales/uso terapéutico , Antivirales/farmacología , Neuraminidasa , Farmacorresistencia Viral
4.
J Virol ; 95(15): e0069221, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980596

RESUMEN

Swine influenza virus (SIV) can cause respiratory illness in swine. Swine contribute to influenza virus reassortment, as avian, human, and/or swine influenza viruses can infect swine and reassort, and new viruses can emerge. Thus, it is important to determine the host antiviral responses that affect SIV replication. In this study, we examined the innate antiviral cytokine response to SIV by swine respiratory epithelial cells, focusing on the expression of interferon (IFN) and interferon-stimulated genes (ISGs). Both primary and transformed swine nasal and tracheal respiratory epithelial cells were examined following infection with field isolates. The results show that IFN and ISG expression is maximal at 12 h postinfection (hpi) and is dependent on cell type and virus genotype. IMPORTANCE Swine are considered intermediate hosts that have facilitated influenza virus reassortment events that have given rise pandemics or genetically related viruses have become established in swine. In this study, we examine the innate antiviral response to swine influenza virus in primary and immortalized swine nasal and tracheal epithelial cells, and show virus strain- and host cell type-dependent differential expression of key interferons and interferon-stimulated genes.


Asunto(s)
Citocinas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Mucosa Respiratoria/inmunología , Animales , Línea Celular , Citocinas/inmunología , Perros , Células Epiteliales/virología , Interacciones Huésped-Patógeno/inmunología , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Interferones/inmunología , Células de Riñón Canino Madin Darby , Infecciones por Orthomyxoviridae/inmunología , Mucosa Respiratoria/citología , Porcinos , Replicación Viral/fisiología
5.
mSystems ; 5(5)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873612

RESUMEN

Influenza A virus (IAV) is a major pathogen of the human respiratory tract, where the virus coexists and interacts with bacterial populations comprising the respiratory tract microbiome. Synergies between IAV and respiratory bacterial pathogens promote enhanced inflammation and disease burden that exacerbate morbidity and mortality. We demonstrate that direct interactions between IAV and encapsulated bacteria commonly found in the respiratory tract promote environmental stability and infectivity of IAV. Antibiotic-mediated depletion of the respiratory bacterial flora abrogated IAV transmission in ferret models, indicating that these virus-bacterium interactions are operative for airborne transmission of IAV. Restoring IAV airborne transmission in antibiotic-treated ferrets by coinfection with Streptococcus pneumoniae confirmed a role for specific members of the bacterial respiratory community in promoting IAV transmission. These results implicate a role for the bacterial respiratory flora in promoting airborne transmission of IAV.IMPORTANCE Infection with influenza A virus (IAV), especially when complicated with a secondary bacterial infection, is a leading cause of global mortality and morbidity. Gaining a greater understanding of the transmission dynamics of IAV is important during seasonal IAV epidemics and in the event of a pandemic. Direct bacterium-virus interactions are a recently appreciated aspect of infectious disease biology. Direct interactions between IAV and specific bacterial species of the human upper respiratory tract were found to promote the stability and infectivity of IAV during desiccation stress. Viral environmental stability is an important aspect during transmission, suggesting a potential role for bacterial respiratory communities in IAV transmission. Airborne transmission of IAV was abrogated upon depletion of nasal bacterial flora with topical antibiotics. This defect could be functionally complemented by S. pneumoniae coinfection. These data suggest that bacterial coinfection may be an underappreciated aspect of IAV transmission dynamics.

6.
mBio ; 11(2)2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127459

RESUMEN

Obesity is associated with increased disease severity, elevated viral titers in exhaled breath, and significantly prolonged viral shed during influenza A virus infection. Due to the mutable nature of RNA viruses, we questioned whether obesity could also influence influenza virus population diversity. Here, we show that minor variants rapidly emerge in obese mice. The variants exhibit increased viral replication, resulting in enhanced virulence in wild-type mice. The increased diversity of the viral population correlated with decreased type I interferon responses, and treatment of obese mice with recombinant interferon reduced viral diversity, suggesting that the delayed antiviral response exhibited in obesity permits the emergence of a more virulent influenza virus population. This is not unique to obese mice. Obesity-derived normal human bronchial epithelial (NHBE) cells also showed decreased interferon responses and increased viral replication, suggesting that viral diversity also was impacted in this increasing population.IMPORTANCE Currently, 50% of the adult population worldwide is overweight or obese. In these studies, we demonstrate that obesity not only enhances the severity of influenza infection but also impacts viral diversity. The altered microenvironment associated with obesity supports a more diverse viral quasispecies and affords the emergence of potentially pathogenic variants capable of inducing greater disease severity in lean hosts. This is likely due to the impaired interferon response, which is seen in both obese mice and obesity-derived human bronchial epithelial cells, suggesting that obesity, aside from its impact on influenza virus pathogenesis, permits the stochastic accumulation of potentially pathogenic viral variants, raising concerns about its public health impact as the prevalence of obesity continues to rise.


Asunto(s)
Susceptibilidad a Enfermedades , Virus de la Influenza A/fisiología , Gripe Humana/etiología , Obesidad/complicaciones , Animales , Interacciones Huésped-Patógeno , Humanos , Gripe Humana/metabolismo , Ratones , Mutación , Fenotipo , ARN Viral , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , Índice de Severidad de la Enfermedad , Virulencia , Replicación Viral
7.
Artículo en Inglés | MEDLINE | ID: mdl-31871227

RESUMEN

Factoring significantly into the global burden of influenza disease are high-risk populations that suffer the bulk of infections. Classically, the very young, very old, and pregnant women have been identified as high-risk populations; however, recent research has uncovered several other conditions that contribute to severe infection. By using varied animal models, researchers have identified molecular mechanisms underpinning the increased likelihood for infection due to obesity and malnourishment, as well as insight into the role sex hormones play in antiviral immunity in males, in females, and across the life span. Additionally, novel comorbidity models have helped elucidate the role of chronic infectious and genetic diseases in influenza virus pathogenesis. Animal models play a vital role in understanding the contribution of host factors to influenza severity and immunity. An in-depth understanding of these host factors represents an important step in reducing the burden of influenza among the growing number of people living with one or more chronic medical conditions.


Asunto(s)
Modelos Animales de Enfermedad , Virus de la Influenza A/genética , Gripe Humana/genética , Animales , Femenino , Humanos , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Gripe Humana/complicaciones , Gripe Humana/prevención & control , Masculino , Ratones , Embarazo , Medición de Riesgo , Factores Sexuales
8.
Nat Microbiol ; 4(8): 1328-1336, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31110359

RESUMEN

Epidemiological observations and animal models have long shown synergy between influenza virus infections and bacterial infections. Influenza virus infection leads to an increase in both the susceptibility to secondary bacterial infections and the severity of the bacterial infections, primarily pneumonias caused by Streptococcus pneumoniae or Staphylococcus aureus. We show that, in addition to the widely described immune modulation and tissue-remodelling mechanisms of bacterial-viral synergy, the virus interacts directly with the bacterial surface. Similar to the recent observation of direct interactions between enteric bacteria and enteric viruses, we observed a direct interaction between influenza virus on the surface of Gram-positive, S. pneumoniae and S. aureus, and Gram-negative, Moraxella catarrhalis and non-typeable Haemophilus influenzae, bacterial colonizers and pathogens in the respiratory tract. Pre-incubation of influenza virus with bacteria, followed by the removal of unbound virus, increased bacterial adherence to respiratory epithelial cells in culture. This result was recapitulated in vivo, with higher bacterial burdens in murine tissues when infected with pneumococci pre-incubated with influenza virus versus control bacteria without virus. These observations support an additional mechanism of bacteria-influenza virus synergy at the earliest steps of pathogenesis.


Asunto(s)
Adhesión Bacteriana/fisiología , Coinfección , Interacciones Microbianas/fisiología , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/virología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/virología , Células A549 , Animales , Bacterias , Infecciones Bacterianas/complicaciones , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Gripe Humana , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/complicaciones , Infecciones del Sistema Respiratorio/complicaciones , Infecciones Estafilocócicas/complicaciones , Staphylococcus aureus , Streptococcus pneumoniae
9.
Methods Mol Biol ; 1836: 431-459, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30151586

RESUMEN

To streamline standard virological assays, we developed bioluminescent replication-competent influenza reporter viruses that mimic their parental counterparts. These reporter viruses provide a rapid and quantitative readout of viral infection and replication. Moreover, they permit real-time in vivo measures of viral load, tissue distribution, and transmission in the same cohort of animals over the entire course of infection-measurements that were not previously possible. Here we provide detailed protocols using bioluminescent reporter viruses for in vivo imaging in mice and ferrets. We also describe cell culture-based techniques using reporter viruses for quantification of viral titers and performing microneutralization assays. The ease, speed, and adaptability of these approaches have the potential to accelerate multiple areas of influenza virus research.


Asunto(s)
Genes Reporteros , Mediciones Luminiscentes , Infecciones por Orthomyxoviridae/diagnóstico , Infecciones por Orthomyxoviridae/virología , Orthomyxoviridae/fisiología , Replicación Viral , Animales , Línea Celular , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Femenino , Hurones , Humanos , Mediciones Luminiscentes/métodos , Masculino , Ratones , Pruebas de Neutralización , Carga Viral
11.
mBio ; 8(5)2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928207

RESUMEN

Obesity is a risk factor for developing severe disease following influenza virus infection; however, the comorbidity of obesity and secondary bacterial infection, a serious complication of influenza virus infections, is unknown. To fill this gap in knowledge, lean and obese C57BL/6 mice were infected with a nonlethal dose of influenza virus followed by a nonlethal dose of Streptococcus pneumoniae Strikingly, not only did significantly enhanced death occur in obese coinfected mice compared to lean controls, but also high mortality was seen irrespective of influenza virus strain, bacterial strain, or timing of coinfection. This result was unexpected, given that most influenza virus strains, especially seasonal human A and B viruses, are nonlethal in this model. Both viral and bacterial titers were increased in the upper respiratory tract and lungs of obese animals as early as days 1 and 2 post-bacterial infection, leading to a significant decrease in lung function. This increased bacterial load correlated with extensive cellular damage and upregulation of platelet-activating factor receptor, a host receptor central to pneumococcal invasion. Importantly, while vaccination of obese mice against either influenza virus or pneumococcus failed to confer protection, antibiotic treatment was able to resolve secondary bacterial infection-associated mortality. Overall, secondary bacterial pneumonia could be a widespread, unaddressed public health problem in an increasingly obese population.IMPORTANCE Worldwide obesity rates have continued to increase. Obesity is associated with increased severity of influenza virus infection; however, very little is known about respiratory coinfections in this expanding, high-risk population. Our studies utilized a coinfection model to show that obesity increases mortality from secondary bacterial infection following influenza virus challenge through a "perfect storm" of host factors that lead to excessive viral and bacterial outgrowth. In addition, we found that vaccination of obese mice against either virus or bacteria failed to confer protection against coinfection, but antibiotic treatment did alleviate mortality. Combined, these results represent an understudied and imminent public health concern in a weighty portion of the global population.


Asunto(s)
Coinfección/etiología , Virus de la Influenza A/aislamiento & purificación , Vacunas contra la Influenza/administración & dosificación , Obesidad/complicaciones , Infecciones por Orthomyxoviridae/complicaciones , Vacunas Neumococicas/administración & dosificación , Animales , Coinfección/microbiología , Coinfección/virología , Comorbilidad , Virus de la Influenza A/crecimiento & desarrollo , Pulmón/microbiología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/microbiología , Obesidad/virología , Infecciones por Orthomyxoviridae/microbiología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/prevención & control , Infecciones Neumocócicas/virología , Insuficiencia del Tratamiento , Vacunación
12.
Annu Rev Virol ; 4(1): 327-348, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28715976

RESUMEN

Astroviruses are nonenveloped, positive-sense single-stranded RNA viruses that cause gastrointestinal illness. Although a leading cause of pediatric diarrhea, human astroviruses are among the least characterized enteric RNA viruses. However, by using in vitro methods and animal models to characterize virus-host interactions, researchers have discovered several important properties of astroviruses, including the ability of the astrovirus capsid to act as an enterotoxin, disrupting the gut epithelial barrier. Improved animal models are needed to study this phenomenon, along with the pathogenesis of astroviruses, particularly in those strains that can cause extraintestinal disease. Much like for other enteric viruses, the current dogma states that astroviruses infect in a species-specific manner; however, this assumption is being challenged by growing evidence that these viruses have potential to cross species barriers. This review summarizes these remarkable facets of astrovirus biology, highlighting critical steps toward increasing our understanding of this unique enteric pathogen.


Asunto(s)
Infecciones por Astroviridae/virología , Gastroenteritis/virología , Mamastrovirus/fisiología , Mamastrovirus/patogenicidad , Animales , Infecciones por Astroviridae/fisiopatología , Infecciones por Astroviridae/veterinaria , Cápside/metabolismo , Pollos/virología , Diarrea/virología , Modelos Animales de Enfermedad , Gastroenteritis/fisiopatología , Humanos , Mucosa Intestinal/fisiopatología , Mucosa Intestinal/virología , Mamastrovirus/genética , Ratones , Permeabilidad , Filogenia , Especificidad de la Especie , Porcinos/virología
13.
Artículo en Inglés | MEDLINE | ID: mdl-28638805

RESUMEN

Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H2O2. Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.


Asunto(s)
Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pneumoniae/metabolismo , Zinc/farmacología , Animales , Autólisis/microbiología , Línea Celular , Cobre/metabolismo , Femenino , Interacciones Huésped-Patógeno , Humanos , Peróxido de Hidrógeno , Manganeso/metabolismo , Ratones Endogámicos C57BL , Viabilidad Microbiana , Microscopía Electrónica de Rastreo , Mutación , N-Acetil Muramoil-L-Alanina Amidasa/genética , Piruvato Oxidasa/metabolismo , Streptococcus pneumoniae/patogenicidad , Factores de Virulencia
14.
Viruses ; 9(1)2017 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-28117758

RESUMEN

Astroviruses are a major cause of diarrhea in the young, elderly, and the immunocompromised. Since the discovery of human astrovirus type 1 (HAstV-1) in 1975, the family Astroviridae has expanded to include two more human clades and numerous mammalian and avian-specific genotypes. Despite this, there is still little known about pathogenesis. The following review highlights the current knowledge of astrovirus pathogenesis, and outlines the critical steps needed to further astrovirus research, including the development of animal models of cell culture systems.


Asunto(s)
Infecciones por Astroviridae/virología , Astroviridae/fisiología , Interacciones Huésped-Patógeno , Animales , Humanos
15.
mBio ; 7(6)2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27803180

RESUMEN

The disease mechanisms associated with the onset of astrovirus diarrhea are unknown. Unlike other enteric virus infections, astrovirus infection is not associated with an inflammatory response or cellular damage. In vitro studies in differentiated Caco-2 cells demonstrated that human astrovirus serotype 1 (HAstV-1) capsid protein alone disrupts the actin cytoskeleton and tight junction complex, leading to increased epithelial barrier permeability. In this study, we show that oral administration of purified recombinant turkey astrovirus 2 (TAstV-2) capsid protein results in acute diarrhea in a dose- and time-dependent manner in turkey poults. Similarly to that induced by infectious virus, TAstV-2 capsid-induced diarrhea was independent of inflammation or histological changes but was associated with increased intestinal barrier permeability, as well as redistribution of sodium hydrogen exchanger 3 (NHE3) from the membrane to the cytoplasm of the intestinal epithelium. Unlike other viral enterotoxins that have been identified, astrovirus capsid induces diarrhea after oral administration, reproducing the natural route of infection and demonstrating that ingestion of intact noninfectious capsid protein may be sufficient to provoke acute diarrhea. Based on these data, we hypothesize that the astrovirus capsid acts like an enterotoxin and induces intestinal epithelial barrier dysfunction. IMPORTANCE: Acute gastroenteritis, with its sequela diarrhea, is one of the most important causes of childhood morbidity and mortality worldwide. A variety of infectious agents cause gastroenteritis, and in many cases, an enterotoxin produced by the agent is involved in disease manifestations. Although we commonly think of bacteria as a source of toxins, at least one enteric virus, rotavirus, produces a protein with enterotoxigenic activity during viral replication. In these studies, we demonstrate that oral administration of the turkey astrovirus 2 (TAstV-2) structural (capsid) protein induces acute diarrhea, increases barrier permeability, and causes relocalization of NHE3 in the small intestine, suggesting that rotavirus may not be alone in possessing enterotoxigenic activity.


Asunto(s)
Avastrovirus/patogenicidad , Proteínas de la Cápside/administración & dosificación , Proteínas de la Cápside/toxicidad , Diarrea/inducido químicamente , Diarrea/patología , Administración Oral , Membrana Celular/química , Citoplasma/química , Mucosa Intestinal/patología , Intercambiadores de Sodio-Hidrógeno/análisis , Turquía
16.
PLoS Pathog ; 12(8): e1005804, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27505057

RESUMEN

The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVß6 integrin, which is upregulated during injury. Once expressed, αVß6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of ß6 during influenza infection is involved in disease pathogenesis. ß6-deficient mice (ß6 KO) have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the ß6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM) and elevated type I IFN signaling activity, which we traced to the loss of ß6-activated transforming growth factor-ß (TGF-ß). Administration of exogenous TGF-ß to ß6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVß6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.


Asunto(s)
Antígenos de Neoplasias/inmunología , Integrinas/inmunología , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Pulmón/inmunología , Infecciones del Sistema Respiratorio/inmunología , Traslado Adoptivo , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Immunoblotting , Pulmón/microbiología , Macrófagos Alveolares/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
J Virol ; 90(19): 8454-63, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27440882

RESUMEN

UNLABELLED: The only licensed live attenuated influenza A virus vaccines (LAIVs) in the United States (FluMist) are created using internal protein-coding gene segments from the cold-adapted temperature-sensitive master donor virus A/Ann Arbor/6/1960 and HA/NA gene segments from circulating viruses. During serial passage of A/Ann Arbor/6/1960 at low temperatures to select the desired attenuating phenotypes, multiple cold-adaptive mutations and temperature-sensitive mutations arose. A substantial amount of scientific and clinical evidence has proven that FluMist is safe and effective. Nevertheless, no study has been conducted specifically to determine if the attenuating temperature-sensitive phenotype can revert and, if so, the types of substitutions that will emerge (i.e., compensatory substitutions versus reversion of existing attenuating mutations). Serial passage of the monovalent FluMist 2009 H1N1 pandemic vaccine at increasing temperatures in vitro generated a variant that replicated efficiently at higher temperatures. Sequencing of the variant identified seven nonsynonymous mutations, PB1-E51K, PB1-I171V, PA-N350K, PA-L366I, NP-N125Y, NP-V186I, and NS2-G63E. None occurred at positions previously reported to affect the temperature sensitivity of influenza A viruses. Synthetic genomics technology was used to synthesize the whole genome of the virus, and the roles of individual mutations were characterized by assessing their effects on RNA polymerase activity and virus replication kinetics at various temperatures. The revertant also regained virulence and caused significant disease in mice, with severity comparable to that caused by a wild-type 2009 H1N1 pandemic virus. IMPORTANCE: The live attenuated influenza vaccine FluMist has been proven safe and effective and is widely used in the United States. The phenotype and genotype of the vaccine virus are believed to be very stable, and mutants that cause disease in animals or humans have never been reported. By propagating the virus under well-controlled laboratory conditions, we found that the FluMist vaccine backbone could regain virulence to cause severe disease in mice. The identification of the responsible substitutions and elucidation of the underlying mechanisms provide unique insights into the attenuation of influenza virus, which is important to basic research on vaccines, attenuation reversion, and replication. In addition, this study suggests that the safety of LAIVs should be closely monitored after mass vaccination and that novel strategies to continue to improve LAIV vaccine safety should be investigated.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/genética , Animales , Modelos Animales de Enfermedad , Ratones , Orthomyxoviridae , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , ARN Viral/genética , Genética Inversa , Análisis de Secuencia de ADN , Pase Seriado , Supresión Genética , Temperatura , Vacunas Atenuadas/genética , Virulencia , Replicación Viral
18.
Nat Commun ; 6: 6378, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25744559

RESUMEN

Influenza transmission efficiency in ferrets is vital for risk-assessment studies. However, the inability to monitor viral infection and transmission dynamics in real time only provides a glimpse into transmissibility. Here we exploit a replication-competent influenza reporter virus to investigate dynamics of infection/transmission in ferrets. Bioluminescent imaging of ferrets infected with A/California/04/2009 H1N1 virus (CA/09) encoding NanoLuc (NLuc) luciferase provides the first real-time snapshot of influenza infection/transmission. Luminescence in the respiratory tract and in less well-characterized extra-pulmonary sites is observed, and imaging identifies infections in animals that would have otherwise been missed by traditional methods. Finally, the reporter virus significantly increases the speed and sensitivity of virological and serological assays. Thus, bioluminescent imaging of influenza infections rapidly determines intra-host dissemination, inter-host transmission and viral load, revealing infection dynamics and pandemic potential of the virus. These results have important implications for antiviral drug susceptibility, vaccine efficacy, transmissibility and pathogenicity studies.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Mediciones Luminiscentes/métodos , Infecciones por Orthomyxoviridae/fisiopatología , Infecciones por Orthomyxoviridae/transmisión , Sistema Respiratorio/virología , Animales , Hurones , Pruebas de Inhibición de Hemaglutinación , Luciferasas , Pruebas de Neutralización , Genética Inversa , Carga Viral
19.
PLoS Pathog ; 11(2): e1004642, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25668410

RESUMEN

The recent emergence of a novel H7N9 influenza A virus (IAV) causing severe human infections in China raises concerns about a possible pandemic. The lack of pre-existing neutralizing antibodies in the broader population highlights the potential protective role of IAV-specific CD8(+) cytotoxic T lymphocyte (CTL) memory specific for epitopes conserved between H7N9 and previously encountered IAVs. In the present study, the heterosubtypic immunity generated by prior H9N2 or H1N1 infections significantly, but variably, reduced morbidity and mortality, pulmonary virus load and time to clearance in mice challenged with the H7N9 virus. In all cases, the recall of established CTL memory was characterized by earlier, greater airway infiltration of effectors targeting the conserved or cross-reactive H7N9 IAV peptides; though, depending on the priming IAV, each case was accompanied by distinct CTL epitope immunodominance hierarchies for the prominent K(b)PB(1703, D(b)PA(224), and D(b)NP(366) epitopes. While the presence of conserved, variable, or cross-reactive epitopes between the priming H9N2 and H1N1 and the challenge H7N9 IAVs clearly influenced any change in the immunodominance hierarchy, the changing patterns were not tied solely to epitope conservation. Furthermore, the total size of the IAV-specific memory CTL pool after priming was a better predictor of favorable outcomes than the extent of epitope conservation or secondary CTL expansion. Modifying the size of the memory CTL pool significantly altered its subsequent protective efficacy on disease severity or virus clearance, confirming the important role of heterologous priming. These findings establish that both the protective efficacy of heterosubtypic immunity and CTL immunodominance hierarchies are reflective of the immunological history of the host, a finding that has implications for understanding human CTL responses and the rational design of CTL-mediated vaccines.


Asunto(s)
Epítopos de Linfocito T/inmunología , Inmunidad Heteróloga/inmunología , Epítopos Inmunodominantes/inmunología , Memoria Inmunológica/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Reacciones Cruzadas/inmunología , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Masculino , Ratones , Ratones Endogámicos C57BL
20.
J Biol Chem ; 289(51): 35246-63, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25339175

RESUMEN

Influenza infection exacerbates chronic pulmonary diseases, including idiopathic pulmonary fibrosis. A central pathway in the pathogenesis of idiopathic pulmonary fibrosis is epithelial injury leading to activation of transforming growth factor ß (TGFß). The mechanism and functional consequences of influenza-induced activation of epithelial TGFß are unclear. Influenza stimulates toll-like receptor 3 (TLR3), which can increase RhoA activity, a key event prior to activation of TGFß by the αvß6 integrin. We hypothesized that influenza would stimulate TLR3 leading to activation of latent TGFß via αvß6 integrin in epithelial cells. Using H1152 (IC50 6.1 µm) to inhibit Rho kinase and 6.3G9 to inhibit αvß6 integrins, we demonstrate their involvement in influenza (A/PR/8/34 H1N1) and poly(I:C)-induced TGFß activation. We confirm the involvement of TLR3 in this process using chloroquine (IC50 11.9 µm) and a dominant negative TLR3 construct (pZERO-hTLR3). Examination of lungs from influenza-infected mice revealed augmented levels of collagen deposition, phosphorylated Smad2/3, αvß6 integrin, and apoptotic cells. Finally, we demonstrate that αvß6 integrin-mediated TGFß activity following influenza infection promotes epithelial cell death in vitro and enhanced collagen deposition in vivo and that this response is diminished in Smad3 knock-out mice. These data show that H1N1 and poly(I:C) can induce αvß6 integrin-dependent TGFß activity in epithelial cells via stimulation of TLR3 and suggest a novel mechanism by which influenza infection may promote collagen deposition in fibrotic lung disease.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Colágeno/metabolismo , Células Epiteliales/metabolismo , Integrinas/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Antígenos de Neoplasias/genética , Antivirales/farmacología , Apoptosis , Línea Celular Transformada , Perros , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Interacciones Huésped-Patógeno , Humanos , Immunoblotting , Subtipo H1N1 del Virus de la Influenza A/fisiología , Integrinas/genética , Pulmón/metabolismo , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/virología , Fosforilación/efectos de los fármacos , Poli I-C/farmacología , Proteína smad3/genética , Proteína smad3/metabolismo , Receptor Toll-Like 3/metabolismo , Factor de Crecimiento Transformador beta/genética , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA