Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 48(5): 1312-1314, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857276

RESUMEN

To create self-controlled radiation photonics systems, it is necessary to have complete information about the nonlinear properties of the materials used. In this Letter, the vibrational mechanism of the giant low-inertia cubic nonlinearity of the refractive index of water in the terahertz (THz) frequency range is experimentally proven. Its dominance, which manifests itself when the temperature of the liquid changes, is demonstrated. The measured nonlinear refractive index in the THz frequency range for a water jet at temperatures from 14°C to 21°C demonstrates a correlation with the theoretical approach, varies in the range 4-10 × 10-10 cm2/W, and is characterized by an inertial time constant of less than 1 ps.

2.
Sci Rep ; 12(1): 9019, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637288

RESUMEN

High-intensity optical radiation propagation in a transparent dielectric medium causes the phenomena of pulse self-action and radiation generation at triple frequencies due to the cubic nonlinearity of the medium. However, quadratic nonlinear effects usually outshine the cubic ones in anisotropic nonlinear crystals. In this work, we demonstrate that for certain experimental parameters the nonlinear effect of the third order can be stronger than the second order one in the MgO:[Formula: see text] crystal for terahertz frequency range. We experimentally and theoretically show that this effect can lead to the significant modification of the classical phenomenon of radiation generation at triple frequencies in the case when the pulse represents only one complete oscillation of the optical field. The experiment demonstrated that the phenomenon of generation of radiation at triple frequencies with respect to the frequency of the maximum spectral density in a nonlinear medium of the pulse disappears, and it is replaced by the generation of radiation at quadruple frequencies. The analysis confirms that this effect is based on the asymmetry and large width of the initial spectrum of such extremely short pulses in terms of the number of oscillations.

3.
Sci Rep ; 10(1): 9463, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32528142

RESUMEN

The state-of-art broadband THz sources can contribute to the development of short-range 6G communications. This paper has demonstrated the feasibility of forming the controllable sequence of THz subpulses in the temporal domain and the corresponding quasidiscrete spectrum by the interference of two THz pulses with an exponential chirp. Moreover, due to small time delay between these pulses the temporal and spectral structures are similar to each other (so-called "linkage relation"). This will benefit information encoding in the THz range. The calculated metrics for the prototype communication channel based on the proposed method are competitive with existing short-range THz CW channels.

4.
Sci Rep ; 9(1): 9146, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31235853

RESUMEN

Modern sources of THz radiation generate high-intensity pulses allowing to observe nonlinear effects in this spectral range. To describe many nonlinear effects theoretically, it is necessary to know the nonlinear refractive index coefficient of optical materials. The work studies the applicability of the Z-scan method to determine the nonlinear refractive index coefficient in the THz frequency range for few-cycle pulses. We have discussed the correctness of the known Z-scan method for calculating the nonlinear refractive index coefficient for broadband THz radiation regarding number of cycles pulses have. We have demonstrated that the error in determining the nonlinear refractive index coefficient is always greater than 70% for true single-cycle pulses. With the increase in the number of oscillations to the measurement error shows strong dependence on the sample thickness and can vary from 2% to 90% regarding the parameters chosen. The fact that such radiation dispersion length is commensurate with the nonlinear length or even less than the latter results in the discrepancy mentioned. It is demonstrated that the decrease in the sample thickness leads to the reduction of the nonlinear refractive index coefficient determination error, and this error is <2% when the ratio between the sample thickness and the pulse longitudinal spatial size is ≤1. This can relate to the fact that the nonlinear effects in such a thin sample occur faster than the dispersion ones.

5.
Opt Express ; 27(11): 15485-15494, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163744

RESUMEN

Polar liquids are strong absorbers of electromagnetic waves in the terahertz range, therefore, historically such liquids have not been considered as good candidates for terahertz sources. However, flowing liquid medium has explicit advantages, such as a higher damage threshold compared to solid-state sources and more efficient ionization process compared to gases. Here we report systematic study of efficient generation of terahertz radiation in flat liquid jets under sub-picosecond single-color optical excitation. We demonstrate how medium parameters such as molecular density, ionization energy and linear absorption contribute to the terahertz emission from the flat liquid jets. Our simulation and experimental measurements reveal that the terahertz energy has quasi-quadratic dependence on the optical excitation pulse energy. Moreover, the optimal pump pulse duration, which depends on the thickness of the jet is theoretically predicted and experimentally confirmed. The obtained optical-to-terahertz energy conversion efficiency is more than 0.05%. It is comparable to the commonly used optical rectification in most of electro-optical crystals and two-color air filamentation. These results, significantly advancing prior research, can be successfully applied to create a new alternative source of terahertz radiation.

6.
Opt Express ; 27(8): 10419-10425, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31052901

RESUMEN

The values of the nonlinear refractive index coefficient for various materials in the terahertz frequency range exceed the ones in both visible and NIR ranges by several orders of magnitude. This allows to create nonlinear switches, modulators, systems requiring lower control energies in the terahertz frequency range. We report the direct measurement of the nonlinear refractive index coefficient of liquid water by using the Z-scan method with broadband pulsed THz beam. Our experimental result shows that nonlinear refractive index coefficient in water is positive and can be as large as 7×10-10 cm2/W in the THz frequency range, which exceeds the values for the visible and NIR ranges by 6 orders of magnitude. To estimate n2, we use the theoretical model that takes into account ionic vibrational contribution to the third-order susceptibility. We show that the origins of the nonlinearity observed are the anharmonicity of molecular vibrations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA