Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Biomolecules ; 13(12)2023 12 04.
Article En | MEDLINE | ID: mdl-38136611

Previously, the protective role of the S-layer protein 2 (Slp2) of the vaginal Lactobacillus crispatus 2029 (LC2029) strain against foodborne pathogens Campylobacter jejuni, Salmonella enterica serovar Enteritidis, and Escherichia coli O157:H was demonstrated. We demonstrate the new roles of the Slp2-positive LC2029 strain and soluble Slp2 against C. albicans infections. We show that LC2029 bacteria can adhere to the surface of the cervical epithelial HeLa cells, prevent their contact with C. albicans, and block yeast transition to a pathogenic hyphal form. Surface-bound Slp2 provides the ability for LC2029 to co-aggregate with various C. albicans strains, including clinical isolates. C. albicans-induced necrotizing epithelial damage is reduced by colonization with the Slp2-positive LC2029 strain. Slp2 inhibits the adhesion of various strains of C. albicans to different human epithelial cells, blocks yeast transition to a pathogenic hyphal form, and prevents the colonization and pathogenic infiltration of mucosal barriers. Only Slp2 and LC2029 bacteria stimulate the production of protective human ß-defensin 3 in various epithelial cells. These findings support the anti-Candida albicans potential of the probiotic LC2029 strain and Slp2 and form the basis for further research on their ability to prevent and manage invasive Candida infections.


Candidiasis , Lactobacillus crispatus , Female , Humans , Candida albicans , HeLa Cells , Epithelial Cells/metabolism
2.
Antibiotics (Basel) ; 12(10)2023 Oct 12.
Article En | MEDLINE | ID: mdl-37887236

The Ligilactobacillus salivarius 7247 (LS7247) strain, originally isolated from a healthy woman's intestines and reproductive system, has been studied for its probiotic potential, particularly against Salmonella Enteritidis (SE) and Salmonella Typhimurium (ST) as well as its potential use in synbiotics. LS7247 showed high tolerance to gastric and intestinal stress and effectively adhered to human and animal enterocyte monolayers, essential for realizing its probiotic properties. LS7247 showed high anti-Salmonella activity. Additionally, the cell-free culture supernatant (CFS) of LS7247 exhibited anti-Salmonella activity, with a partial reduction upon neutralization with NaOH (p < 0.05), suggesting the presence of anti-Salmonella factors such as lactic acid (LA) and bacteriocins. LS7247 produced a high concentration of LA, reaching 124.0 ± 2.5 mM after 48 h of cultivation. Unique gene clusters in the genome of LS7247 contribute to the production of Enterolysin A and metalloendopeptidase. Notably, LS7247 carries a plasmid with a gene cluster identical to human intestinal strain L. salivarius UCC118, responsible for class IIb bacteriocin synthesis, and a gene cluster identical to porcine strain L. salivarius P1ACE3, responsible for nisin S synthesis. Co-cultivation of LS7247 with SE and ST pathogens reduced their viability by 1.0-1.5 log, attributed to cell wall damage and ATP leakage caused by the CFS. For the first time, the CFS of LS7247 has been shown to inhibit adhesion of SE and ST to human and animal enterocytes (p < 0.01). The combination of Actigen prebiotic and the CFS of LS7247 demonstrated a significant combined effect in inhibiting the adhesion of SE and ST to human and animal enterocytes (p < 0.001). These findings highlight the potential of using the LS7247 as a preventive strategy and employing probiotics and synbiotics to combat the prevalence of salmonellosis in animals and humans caused by multidrug resistant (MDR) strains of SE and ST pathogens.

3.
Open Res Eur ; 3: 62, 2023.
Article En | MEDLINE | ID: mdl-37645492

Background: In industrialised countries diphtheria is a rare but still life-threatening disease with a recent increase in cases due to migration and zoonotic aspects. Due to the rarity of the disease, laboratory diagnosis of diphtheria is often carried out in central reference laboratories and involves the use of sophisticated equipment and specially trained personnel. The result of the diphtheria agent detection can usually be obtained after 5-6 days or more. Authors suggest a Lateral Flow Immunoassay (LFIA)-based laboratory algorithm for the diagnosis of diphtheria, which may render less time in issuing a result and could promote the testing be performed in laboratories closer to the patient. Methods: LFIA for diphtheria toxin (DT) detection was designed using a pair of monoclonal antibodies to receptor-binding subunit B of the DT, and validated with 322 corynebacterial cultures as well as 360 simulated diphtheria specimens. Simulated diphtheria specimens were obtained by spiking of human pharyngeal samples with test strains of corynebacteria. The simulated specimens were plated on selective tellurite agar and after 18-24 hours of incubation, grey/black colonies characteristic of the diphtheria corynebacteria were examined for the DT using LFIA. Results: The diagnostic sensitivity of the LFIA for DT detection on bacterial cultures was 99.35%, and the specificity was 100%. Also, the LFIA was positive for all pharyngeal samples with toxigenic strains and negative for all samples with non-toxigenic strains. For setting LFIA, a 6-hour culture on Elek broth was used; thus, under routine conditions, the causative agent of diphtheria could be detected within two working days after plating of the clinical specimen on the tellurite medium of primary inoculation. Conclusions: The availability of such a simple and reliable methodology will speed up and increase the accuracy of diphtheria diagnosis globally.

4.
Antibiotics (Basel) ; 12(3)2023 Feb 26.
Article En | MEDLINE | ID: mdl-36978338

LF3872 was isolated from the milk of a healthy lactating and breastfeeding woman. Earlier, the genome of LF3872 was sequenced, and a gene encoding unique bacteriocin was discovered. We have shown here that the LF3872 strain produces a novel thermolabile class III bacteriolysin (BLF3872), exhibiting antimicrobial activity against antibiotic-resistant Staphylococcus aureus strains. Sequence analysis revealed the two-domain structural (lysozyme-like domain and peptidase M23 domain) organization of BLF3872. At least 25% residues of this protein are expected to be intrinsically disordered. Furthermore, BLF3872 is predicted to have a very high liquid-liquid phase separation. According to the electron microscopy data, the bacterial cells of LF3872 strain form co-aggregates with the S. aureus 8325-4 bacterial cells. LF3872 produced bacteriolysin BLF3872 that lyses the cells of the S. aureus 8325-4 mastitis-inducing strain. The sensitivity of the antibiotic-resistant S. aureus collection strains and freshly isolated antibiotic-resistant strains was tested using samples from women with lactation mastitis; the human nasopharynx and oral cavity; the oropharynx of pigs; and the cows with a diagnosis of clinical mastitis sensitive to the lytic action of the LF3872 strain producing BLF3872. The co-cultivation of LF3872 strain with various antibiotic-resistant S. aureus strains for 24 h reduced the level of living cells of these pathogens by six log. The LF3872 strain was found to be able to co-aggregate with all studied S. aureus strains. The cell-free culture supernatant of LF3872 (CSLF3872) induced S. aureus cell damage and ATP leakage. The effectiveness of the bacteriolytic action of LF3872 strain did not depend on the origin of the S. aureus strains. The results reported here are important for the creation of new effective drugs against antibiotic-resistant strains of S. aureus circulating in humans and animals.

5.
Front Immunol ; 14: 1110001, 2023.
Article En | MEDLINE | ID: mdl-36798125

The female reproductive tract (FRT) and remote/versatile organs in the body share bidirectional communication. In this review, we discuss the framework of the "FRT-organ axes." Each axis, namely, the vagina-gut axis, uterus-gut axis, ovary-gut axis, vagina-bladder axis, vagina-oral axis, uterus-oral axis, vagina-brain axis, uterus-brain axis, and vagina-joint axis, is comprehensively discussed separately. Each axis could be involved in the pathogenesis of not only gynecological diseases but also diseases occurring apart from the FRT. Although the microbiota is clearly a key player in the FRT-organ axes, more quantitative insight into the homeostasis of the microbiota could be provided by host function measurements rather than current microbe-centric approaches. Therefore, investigation of the FRT-organ axes would provide us with a multicentric approach, including immune, neural, endocrine, and metabolic aspects, for understanding the homeostatic mechanism of women's bodies. The framework of the FRT-organ axes could also provide insights into finding new therapeutic approaches to maintain women's health.


Genitalia, Female , Microbiota , Female , Humans , Genitalia, Female/metabolism , Uterus , Vagina , Ovary
6.
Antibiotics (Basel) ; 13(1)2023 Dec 28.
Article En | MEDLINE | ID: mdl-38247590

Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. Ligilactobacillus salivarius strain 7247 (LS7247) was isolated at the same time from the intestines and reproductive system of a healthy woman. The genomes of these strains contain genes responsible for the production of peptidoglycan-degrading enzymes and factors that increase the permeability of the outer membrane of Gram-negative pathogens. In this work, the anti-Salmonella and intestinal homeostatic features of the LF3872 and LS7247 consortium were studied. A multi-drug resistant (MDR) strain of Salmonella enteritidis (SE) was used in the experiments. The consortium effectively inhibited the adhesion of SE to intact and activated human, porcine, and chicken enterocytes and reduced invasion. The consortium had a bactericidal effect on SE in 6 h of co-culturing. A gene expression analysis of SE showed that the cell-free supernatant (CFS) of the consortium inhibited the expression of virulence genes critical for the colonization of human and animal enterocytes. The CFS stimulated the production of an intestinal homeostatic factor-intestinal alkaline phosphatase (IAP)-in Caco-2 and HT-29 enterocytes. The consortium decreased the production of pro-inflammatory cytokines IL-8, TNF-α, and IL-1ß, and TLR4 mRNA expression in human and animal enterocytes. It stimulated the expression of TLR9 in human and porcine enterocytes and stimulated the expression of TLR21 in chicken enterocytes. The consortium also protected the intestinal barrier functions through the increase of transepithelial electrical resistance (TEER) and the inhibition of paracellular permeability in the monolayers of human and animal enterocytes. The results obtained suggest that a LF3872 and LS7247 consortium can be used as an innovative feed additive to reduce the spread of MDR SE among the population and farm animals.

7.
Antibiotics (Basel) ; 11(10)2022 Oct 19.
Article En | MEDLINE | ID: mdl-36290095

Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. The high-quality genome sequencing of LF3872 was performed, and a gene encoding a unique bacteriocin was discovered. It was established that the bacteriocin produced by LF3872 (BLF3872) belongs to the family of cell-wall-degrading proteins that cause cell lysis. The antibacterial properties of LF3872 were studied using test cultures of antibiotic-resistant Gram-positive and Gram-negative pathogens. Gram-positive pathogens (Staphylococcus aureus strain 8325-4 and S. aureus strain IIE CI-SA 1246) were highly sensitive to the bacteriolytic action of LF3872. Gram-negative pathogens (Escherichia coli, Salmonella strains, and Campylobacter jejuni strains) were more resistant to the bacteriolytic action of LF3872 compared to Gram-positive pathogens. LF3872 is a strong co-aggregator of Gram-negative pathogens. The cell-free culture supernatant of LF3872 (CSLF3872) induced cell damage in the Gram-positive and Gram-negative test cultures and ATP leakage. In the in vitro experiments, it was found that LF3872 and Actigen prebiotic (Alltech Inc., Nicholasville, KY, USA) exhibited synergistic anti-adhesive activity against Gram-negative pathogens. LF3872 has immunoregulatory properties: it inhibited the lipopolysaccharide-induced production of proinflammatory cytokines IL-8, IL-1ß, and TNF-α in a monolayer of Caco-2 cells; inhibited the production of IL-12 and stimulated the production of IL-10 in immature human dendritic cells; and stimulated the production of TGF-ß, IFN-γ, and IgA in the immunocompetent cells of intestinal Peyer's patches (PPs) in mice. These results indicate the possibility of creating a synbiotic based on LF3872 and a prebiotic derived from Saccharomyces cerevisiae cell wall components. Such innovative drugs and biologically active additives are necessary for the implementation of a strategy to reduce the spread of antibiotic-resistant strains of socially significant animal and human infections.

8.
Infection ; 50(6): 1591-1595, 2022 Dec.
Article En | MEDLINE | ID: mdl-36053480

PURPOSE: Diphtheria, still present in many countries of the world, is caused by toxigenic strains of species of the Corynebacterium diphtheriae complex, mainly Corynebacterium diphtheriae and the emerging zoonotic pathogen C. ulcerans. The immunoprecipitation test according to Elek is the gold standard for detection of the major virulence factor diphtheria toxin (DT) in toxigenic corynebacteria. Due to its sophisticated methodological requirements, the classical Elek test is performed mainly by specialized reference laboratories. It was revealed that the current modification of the Elek test does not detect the toxin in weakly toxigenic isolates. Therefore, a more robust method for detecting free DT is urgently needed, especially for toxigenic C. ulcerans strains which are known to produce often much lower amounts of DT than C. diphtheriae. METHODS: Thirty-one tox-positive C. ulcerans isolates with a negative standard Elek test result previously determined as NTTB (non-toxigenic tox bearing) were re-analyzed in this study using a modified immunoprecipitation method optimized regarding different parameters including type and concentration of antitoxin, medium volume, inoculum distance from the antitoxin disk and position of controls. RESULTS: All 31 C. ulcerans strains tested positive in the optimized Elek test. CONCLUSION: Only with a reliable and easy-to-handle method for detecting the toxigenicity of C. ulcerans, it is possible to assess the etiological role of this emerging zoonotic bacterium in human pathology.


Antitoxins , Corynebacterium diphtheriae , Diphtheria , Humans , Diphtheria/diagnosis , Diphtheria/microbiology , Diphtheria Toxin , Corynebacterium
9.
Diagnostics (Basel) ; 12(9)2022 Sep 11.
Article En | MEDLINE | ID: mdl-36140605

Since diphtheria toxin (DT) is the main virulence factor of Corynebacterium diphtheriae and C. ulcerans, the detection of DT in corynebacterial cultures is of utmost importance in the laboratory diagnosis of diphtheria. The need to measure the level of DT production (LTP) arises when studying the virulence of a strain for the purpose of diphtheria agent monitoring. To determine the LTP of diphtheria agents, an immunoassay based on monoclonal antibodies (mAbs) has been developed. A pair of mAbs specific to the fragment B of DT was selected, which makes it possible to detect DT in a sandwich ELISA with a detection limit of DT less than 1 ng/mL. Sandwich ELISA was used to analyze 218 liquid culture supernatants of high-, low- and non-toxigenic strains of various corynebacteria. It was shown that the results of ELISA are in good agreement with the results of PCR and the Elek test for the tox gene and DT detection, respectively. The diagnostic sensitivity of the assay was approximately 99%, and specificity was 100%. It has been found that strains of C. ulcerans, on average, produce 10 times less DT than C. diphtheriae. The mAbs used in the ELISA proved to be quite discriminatory and could be further used for the design of the LFIA, a method that can reduce the labor and cost of laboratory diagnosis of diphtheria.

10.
Int J Biol Macromol ; 189: 410-419, 2021 Oct 31.
Article En | MEDLINE | ID: mdl-34437917

We have previously demonstrated the ability of the human vaginal strain Lactobacillus crispatus 2029 (LC2029) for strong adhesion to cervicovaginal epithelial cells, expression of the surface layer protein 2 (Slp2), and antagonistic activity against urogenital pathogens. Slp2 forms regular two-dimensional structure around the LC2029 cells,which is secreted into the medium and inhibits intestinal pathogen-induced activation of caspase-9 and caspase-3 in the human intestinal Caco-2 cells. Here, we elucidated the effects of soluble Slp2 on adhesion of proteobacteria pathogens inducing necrotizing enterocolitis (NEC), such as Escherichia coli ATCC E 2348/69, E. coli ATCC 31705, Salmonella Enteritidis ATCC 13076, Campylobacter jejuni ATCC 29428, and Pseudomonas aeruginosa ATCC 27853 to Caco-2 cells, as well as on growth promotion, differentiation, vascular endothelial growth factor (VEGF) production, and intestinal barrier function of Caco-2 cell monolayers. Slp2 acts as anti-adhesion agent for NEC-inducing proteobacteria, promotes growth of immature Caco-2 cells and their differentiation, and enhances expression and functional activity of sucrase, lactase, and alkaline phosphatase. Slp2 stimulates VEGF production, decreases paracellular permeability, and increases transepithelial electrical resistance, strengthening barrier function of Caco-2 cell monolayers. These data support the important role of Slp2 in the early postnatal development of the human small intestine enterocytes.


Cell Differentiation , Enterocytes/metabolism , Lactobacillus crispatus/chemistry , Membrane Glycoproteins/pharmacology , Vagina/microbiology , Vascular Endothelial Growth Factor A/biosynthesis , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Bacterial Adhesion/drug effects , Caco-2 Cells , Cell Differentiation/drug effects , Cell Membrane Permeability/drug effects , Cell Proliferation/drug effects , Electric Impedance , Enterocytes/drug effects , Female , Gene Expression Regulation, Enzymologic/drug effects , Humans , Lactase/genetics , Lactase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sucrase/genetics , Sucrase/metabolism
11.
Probiotics Antimicrob Proteins ; 12(4): 1439-1450, 2020 12.
Article En | MEDLINE | ID: mdl-32462507

Several species of eukaryotic organisms living in the high mountain areas of Armenia with naturally occurring levels of radiation have high adaptive responses to radiation. We speculate on the role of the gastrointestinal microbiota in this protection against radiation. Therefore, seventeen microorganisms with high antagonistic activities against several multi-drug-resistant pathogens were isolated from the human and animal gut microbiota, as well as from traditional Armenian fermented products. These strains were tested in vivo on Wistar rats to determine their ability to protect the eukaryotic host against radiation damages. The efficiency of the probiotics' application and the dependence on pre- and post-radiation nutrition of rats were described. The effects of Lactobacillus rhamnosus Vahe, isolated from a healthy breastfed infant, and Lactobacillus delbrueckii IAHAHI, isolated from the fermented dairy product matsuni, on the survival of irradiated rats, and their blood leucocyte and glucose levels, were considered to be the most promising, based on this study's results.


Gastrointestinal Microbiome/physiology , Lacticaseibacillus rhamnosus/metabolism , Lactobacillus delbrueckii/metabolism , Probiotics/pharmacology , Radiation Injuries/prevention & control , Radiation Tolerance/drug effects , Animals , Biotin/biosynthesis , Cultured Milk Products , Folic Acid/biosynthesis , Humans , Lactobacillus delbrueckii/growth & development , Lacticaseibacillus rhamnosus/growth & development , Leukocyte Count , Male , Nutritional Status/physiology , Nutritional Status/radiation effects , Radiation Dosage , Radiation Injuries/metabolism , Radiation Injuries/microbiology , Radiation Injuries/mortality , Radiation Tolerance/physiology , Radiometry , Rats , Rats, Wistar , Riboflavin/biosynthesis , Survival Analysis , Vitamin B 6/biosynthesis , Whole-Body Irradiation , X-Rays
12.
Int J Biol Macromol ; 150: 400-412, 2020 May 01.
Article En | MEDLINE | ID: mdl-32045605

We have previously demonstrated that human vaginal Lactobacillus crispatus 2029 (LC2029) strain is highly adhesive to cervicovaginal epithelial cells, exhibits antagonistic activity against genitourinary pathogens and expresses surface-layer protein (Slp). The aims of the present study were elucidation of Slp structural and immunomodulatory characteristics and its roles in protective properties of the whole vaginal LC2029 bacteria against foodborne pathogens. Enteric Caco-2 and colon HT-29 cell lines were used as the in vitro models of the human intestinal epithelial layer. LC2029 strain has two homologous surface-layer (S-layer) genes, slp1 and slp2. Whilst we found no evidence for the expression of slp1 under the growth conditions used, a very high level of expression of the slp2 gene was detected. C-terminal part of the amino sequence of Slp2 protein was found to be highly similar to that of the conserved C-terminal region of SlpA protein of L. crispatus Zj001 isolated from pig intestines and CbsA protein of L. crispatus JCM5810 isolated from chicken intestines, and was substantially variable at the N-terminal and middle regions. The amino acid sequence identity between SlpA and CbsA was as high as 84%, whilst the identity levels of these sequences with that of Slp2 were only 49% and 50% (respectively). LC2029 strain was found to be both acid and bile tolerant. Survival in simulated gastric and intestinal juices of LC2029 cells unable to produce Slp2 was reduced by 2-3 logs. Vaginal L. crispatus 1385 (LC1385) strain not expressing Slp was also very sensitive to gastric and intestinal stresses. Slp2 was found to be non-covalently bound to the surface of the bacterium, acting as an adhesin and facilitating interaction of LC2029 lactobacilli with the host immature or fully differentiated Caco-2 cells, as well as HT-29 cells. No toxicity to or damage of Caco-2 or HT-29 epithelial cells were detected after 24 h of colonization by LC2029 lactobacilli. Both Slp2 protein and LC2029 cells induced NF-kB activation in Caco-2 and HT-29 cells, but did not induce expression of innate immunity mediators Il-8, Il-1ß, and TNF-α. Slp2 and LC2029 inhibited Il-8 production in Caco-2 and HT-29 cells induced by MALP-2 and increased production of anti-inflammatory cytokine Il-6. Slp2 inhibited production of CXCL1 and RANTES by Caco-2 cells during differentiation and maturation process within 15 days. Culturing Caco-2 and HT-29 cells in the presence of Slp2 increased adhesion of bifidobacteria BLI-2780 to these enterocytes. Upon binding to Caco-2 and HT-29 cells, Slp2 protein and LC2029 lactobacilli were recognized by toll-like receptors (TLR) 2/6. It was shown that LC2029 strain is a strong co-aggregator of foodborne pathogens Campylobacter jejuni, Salmonella enteritidis, and Escherichia coli O157:H used in this study. The Slp2 was responsible for the ability of LC2029 to co-aggregate these enteropathogens. Slp2 and intact LC2029 lactobacilli inhibited foodborne pathogen-induced activation of caspase-9 and caspase-3 as apoptotic biomarkers in Caco-2 and HT-29 cells. In addition, Slp2 and Slp2-positive LC2029 strain reduced adhesion of tested pathogenic bacteria to Caco-2 and HT-29 cells. Slp2-positive LC2029 strain but not Slp2 alone provided bactericidal effect on foodborne pathogens. These results suggest a range of mechanisms involved in inhibition of growth, viability, and cell-adhesion properties of pathogenic Proteobacteria by the Slp2 producing LC2029, which may be useful in treatment of necrotizing enterocolitis (NEC) in newborns and foodborne infectious diseases in children and adults, increasing the colonization resistance and maintaining the intestinal homeostasis.


Antibiosis , Foodborne Diseases/diet therapy , Foodborne Diseases/microbiology , Immunomodulation , Lactobacillus crispatus/physiology , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/immunology , Probiotics , Bacterial Adhesion , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/metabolism , Bile Acids and Salts , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line , Cell Survival , Epithelial Cells , Inflammation Mediators/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Stress, Physiological , Structure-Activity Relationship
13.
Genome Announc ; 2(3)2014 Jun 19.
Article En | MEDLINE | ID: mdl-24948771

In this report, we present a draft sequence of Bacillus subtilis KATMIRA1933. Previous studies demonstrated probiotic properties of this strain partially attributed to production of an antibacterial compound, subtilosin. Comparative analysis of this strain's genome with that of a commercial probiotic strain, B. subtilis Natto, is presented.

14.
Genome Announc ; 2(3)2014 Jun 19.
Article En | MEDLINE | ID: mdl-24948774

In this report, we present a draft genome sequence of Bacillus amyloliquefaciens strain B-1895. Comparison with the genome of a reference strain demonstrated similar overall organization, as well as differences involving large gene clusters.

15.
Genome Announc ; 2(1)2014 Feb 20.
Article En | MEDLINE | ID: mdl-24558253

This report describes a draft genome sequence of Lactobacillus crispatus 2029. The reads generated by the Ion Torrent PGM were assembled into contigs with a total size of 2.2 Mb. The data were annotated using the NCBI GenBank and RAST servers. A comparison with the reference strain revealed specific features of the genome.

16.
Genome Announc ; 2(1)2014 Feb 20.
Article En | MEDLINE | ID: mdl-24558254

In this report, we present a draft sequence of the genome of Lactobacillus rhamnosus strain 2166, a potential novel probiotic. Genome annotation and read mapping onto a reference genome of L. rhamnosus strain GG allowed for the identification of the differences and similarities in the genomic contents and gene arrangements of these strains.

17.
Genome Announc ; 1(6)2013 Nov 07.
Article En | MEDLINE | ID: mdl-24201200

This report describes the first draft genome sequence of a Corynebacterium pseudodiphtheriticum strain. The information on the genome organization and putative gene products will assist in better understanding of the molecular mechanisms involved in the beneficial probiotic effects of this bacterium.

18.
Genome Announc ; 1(4)2013 Aug 22.
Article En | MEDLINE | ID: mdl-23969051

Different common factors contribute to the antagonistic properties of Lactobacillus gasseri toward various pathogens. However, there is strain-to-strain variation in the probiotic properties of this bacterium. The draft genome sequence of L. gasseri strain 2016 determined in this study will assist in understanding the genetic basis for such variation.

...