Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Article En | MEDLINE | ID: mdl-34504535

Oxidative stress and neurodegeneration are involved in the initiation of epileptogenesis and progression of epileptic seizures. This study was aimed at investigating the anticonvulsant, antioxidant, and neuroprotective properties of active fractions isolated from Anthocleista djalonensis root barks in pentylenetetrazole mouse models of epileptic seizures. Bioactive-guided fractionation of Anthocleista djalonensis (AFAD) extracts using acute pentylenetetrazole (90 mg/kg) induced generalised tonic-clonic seizures, which afforded a potent anticonvulsant fraction (FPool 5). Further fractionation of AFAD was performed by high-performance liquid chromatography, which yielded fifteen subfractions, which were chemically characterised. In addition, AFAD was tested against convulsions or spontaneous kindled seizures induced, respectively, by acute (50 mg/kg) or subchronic (30 mg/kg) injection of pentylenetetrazole. Finally, oxidative stress markers, brain GABA content, and neuronal cell loss were evaluated in AFAD-treated pentylenetetrazole-kindled mice. Administration of AFAD significantly protected mice against acute pentylenetetrazole (90 mg/kg)-induced convulsions. In acute pentylenetetrazole (50 mg/kg)-induced hippocampal and cortical paroxysmal discharges, AFAD significantly decreased the number of crisis, the cumulative duration of crisis, and the mean duration of crisis. Additionally, AFAD significantly decreased the number of myoclonic jerks and improved the seizure score in subchronic pentylenetetrazole-induced kindled seizures. The pentylenetetrazole-induced alteration of oxidant-antioxidant balance, GABA concentration, and neuronal cells in the brain were attenuated by AFAD treatment. This study showed that AFAD protected mice against pentylenetetrazole-induced epileptic seizures possibly through the enhancement of antioxidant defence and GABAergic signalling. These events might be correlated with the amelioration of neuronal cell loss; hence, AFAD could be a potential candidate for the treatment of epilepsy.

2.
J Basic Clin Physiol Pharmacol ; 28(5): 425-435, 2017 Sep 26.
Article En | MEDLINE | ID: mdl-28777735

BACKGROUND: The root bark of Anthocleista djalonensis A. Chev. (Loganiaceae) is widely used in traditional medicine in Northern Cameroon to treat epilepsy and related conditions, such as migraine, insomnia, dementia, anxiety, and mood disorders. METHODS: To investigate the anticonvulsant effects and the possible mechanisms of this plant, an aqueous extract of Anthocleista djalonensis (AEAD) was evaluated by using animal models of bicuculline-, picrotoxin-, pilocarpine-, and pentylenetetrazole-induced convulsions. Their effects on brain γ-aminobutyric acid (GABA) concentration and GABA-T activity were also determined. RESULTS: This extract significantly protected mice against bicuculline-induced motor seizures. It provided 80% protection against picrotoxin-induced tonic-clonic seizures, and strongly antagonized convulsions induced by pilocarpine. AEAD also protected 100% of mice against pentylenetetrazole-induced seizures. Flumazenil, a central benzodiazepine receptor antagonist and FG7142, a partial inverse agonist in the benzodiazepine site of the GABAA receptor complex, were found to have an inhibitory effect on the anticonvulsant action of AEAD in pentylenetetrazole test. Finally, the brain GABA concentration was significantly increased and GABA-T activity was inhibited by AEAD. CONCLUSIONS: The effects of Anthocleista djalonensis suggested the presence of anticonvulsant properties that might involve an action on benzodiazepine and/or GABA sites in the GABAA receptor complex or by modulating GABA concentration in the central nervous system (CNS).


Anticonvulsants/pharmacology , Loganiaceae/chemistry , Plant Bark/chemistry , Plant Roots/chemistry , gamma-Aminobutyric Acid/metabolism , Animals , Benzodiazepines/pharmacology , Male , Mice , Mice, Inbred BALB C , Pentylenetetrazole/pharmacology , Phytotherapy/methods , Plant Extracts/pharmacology , Seizures/drug therapy , Seizures/metabolism
3.
J Ethnopharmacol ; 194: 421-433, 2016 Dec 24.
Article En | MEDLINE | ID: mdl-27725241

ETHNOPHARMACOLOGICAL RELEVANCE: The leaf extract of Crinum jagus L. (Amaryllidaceae) is widely used in traditional Cameroonian medicine as antiepileptic remedy and for the treatment of convulsion, depression and mood disorders associated with epilepsy. AIM OF THE STUDY: Hence, this study was conducted to evaluate the effects of an active fraction extracted from the leaves of Crinum jagus against seizures, depression-like behaviour and oxidative stress in pentylenetetrazole (PTZ)-induced kindling in mice. MATERIALS AND METHODS: Bioactive-guided fractionation of the leaf extract of Crinum jagus by using 70mg/kg PTZ-induced convulsions in mice, afforded a potent anticonvulsant fraction (flavonol kaempferol; C4.4). The effects of C4.4 on 30mg/kg PTZ-induced kindling, kindling-induced depression like-behaviour and oxidative stress was evaluated. Mice were injected PTZ (30mg/kg, i.p.) once every alternate day (48±1h) until the development of kindling. Depression was assessed using tail suspension test and forced swim test while the oxidative stress parameters were estimated in the whole brain at the end of experiments. Mice were submitted to the rota-rod task and open-field test in order to assess any non-specific muscle-relaxant or sedative effects of C4.4. Acute toxicity of C4.4 was also assessed in mice. RESULTS: Convulsions-induced by 70mg/kg PTZ were strongly antagonized by C4.4. Oral administration of C4.4 significantly increased the latency to myoclonic jerks, clonic seizures as well as generalized tonic-clonic seizures, improved the seizure mean stage and decreased the number of myoclonic jerks in PTZ-kindled mice. The data indicated also that C4.4 significantly reduced the immobility times in the tail suspension test and the forced swim test. This active fraction has also antioxidant properties by decreasing the lipid peroxidation, and augmenting endogenous antioxidant enzymes in brain. C4.4 administered (12.5-50mg/kg) did not alter the locomotion of animals in the open-field or rotarod tests, which suggest a lack of a central depressant effect. The animals did not exhibit any acute toxicity to C4.4 at the therapeutic doses. CONCLUSION: These results suggest that pretreatment with C4.4 ameliorates convulsions-induced by PTZ, protects mice against kindling development, depression-like behaviour and oxidative stress in PTZ-kindled mice. These finding provides scientific rationale for the use of Crinum jagus extracts for the amelioration of epilepsy observed in traditional medicine in Cameroon.


Anticonvulsants/pharmacology , Crinum/chemistry , Depression/prevention & control , Disease Models, Animal , Kindling, Neurologic/drug effects , Oxidative Stress/drug effects , Pentylenetetrazole/toxicity , Plant Extracts/pharmacology , Seizures/prevention & control , Animals , Male , Mice , Plant Leaves/chemistry
4.
BMC Complement Altern Med ; 16(1): 285, 2016 Aug 12.
Article En | MEDLINE | ID: mdl-27520389

BACKGROUND: Despite the increasing number and variety of antiepileptic drugs, nearly 30 % of epileptic patients who receive appropriate medical attention have persisting seizures. Anticonvulsant activity has been demonstrated for different iridoid glycoside-rich plant extracts. This study was designed to investigate the anticonvulsant effects of iridoid glycosides purified from Feretia apodanthera and to explore the possible mechanisms involved in antiepileptic activity. METHODS: The anticonvulsant effects of iridoid glycosides extracts were investigated against 2.7 mg/kg bicuculline- and 70 mg/kg pentylenetetrazole-induced convulsions. The behavioural and electroencephalographic manifestations of 50 mg/kg pentylenetetrazole-induced seizures in mice as a model of generalized tonic-clonic seizures were also evaluated. Finally, the extracts were tested on the course of kindling development, kindled-seizures and oxidative stress markers in 30 mg/kg pentylenetetrazole-kindled mice. Their effects on brain GABA content were also determined. RESULTS: The iridoid glycosides (30-90 mg/kg) protected mice against bicuculline-induced motor seizures in all pre-treated animals. Behavioural seizures- and mortality-induced by 70 mg/kg pentylenetetrazole were strongly antagonized by the extracts (60-90 mg/kg). The number of crisis (n/20 min), the cumulative duration of crisis (sec/20 min), and the mean duration of crisis (sec) recorded in 50 mg/kg pentylenetetrazole-treated mice were significantly decreased in all pre-treated mice with the extracts (60-90 mg/kg). Administration of the extracts (30-90 mg/kg) significantly increased the latency to myoclonic jerks, clonic seizures as well as generalized tonic-clonic seizures, improved the seizure mean stage and decreased the number of myoclonic jerks in 30 mg/kg pentylenetetrazole-kindled mice. Pentylenetetrazole kindling induced significant oxidative stress and brain GABA content alteration that was reversed by pretreatment with the extracts in a dose-dependent manner. CONCLUSIONS: The results indicate that pretreatment with the iridoid glycosides extracts of Feretia apodenthera improves generalized tonic-clonic seizures-induced by chemo-convulsants, protects mice against kindling development and oxidative stress, and improves brain GABA content in pentylenetetrazole-kindled mice.


Anticonvulsants/pharmacology , Iridoid Glycosides/pharmacology , Plant Extracts/pharmacology , Rubiaceae/chemistry , Seizures/chemically induced , Animals , Anticonvulsants/chemistry , Brain Chemistry/drug effects , Glutathione/analysis , Iridoid Glycosides/chemistry , Male , Mice , Pentylenetetrazole/toxicity , Plant Bark/chemistry , Plant Extracts/chemistry
...