Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(4): pgae103, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38560525

RESUMEN

Physicists routinely need probabilistic models for a number of tasks such as parameter inference or the generation of new realizations of a field. Establishing such models for highly non-Gaussian fields is a challenge, especially when the number of samples is limited. In this paper, we introduce scattering spectra models for stationary fields and we show that they provide accurate and robust statistical descriptions of a wide range of fields encountered in physics. These models are based on covariances of scattering coefficients, i.e. wavelet decomposition of a field coupled with a pointwise modulus. After introducing useful dimension reductions taking advantage of the regularity of a field under rotation and scaling, we validate these models on various multiscale physical fields and demonstrate that they reproduce standard statistics, including spatial moments up to fourth order. The scattering spectra provide us with a low-dimensional structured representation that captures key properties encountered in a wide range of physical fields. These generic models can be used for data exploration, classification, parameter inference, symmetry detection, and component separation.

2.
Sci Adv ; 8(36): eabq4834, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070388

RESUMEN

Designed and engineered protein and DNA nanopores can be used to sense and characterize single molecules and control transmembrane transport of molecular species. However, designed biomolecular pores are less than 100 nm in length and are used primarily for transport across lipid membranes. Nanochannels that span longer distances could be used as conduits for molecules between nonadjacent compartments or cells. Here, we design micrometer-long, 7-nm-diameter DNA nanochannels that small molecules can traverse according to the laws of continuum diffusion. Binding DNA origami caps to channel ends eliminates transport and demonstrates that molecules diffuse from one channel end to the other rather than permeating through channel walls. These micrometer-length nanochannels can also grow, form interconnects, and interface with living cells. This work thus shows how to construct multifunctional, dynamic agents that control molecular transport, opening ways of studying intercellular signaling and modulating molecular transport between synthetic and living cells.


Asunto(s)
ADN , Nanoporos , Transporte Biológico , ADN/química , Difusión , Nanotecnología
3.
Astrobiology ; 15(12): 1031-42, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26684503

RESUMEN

Contents 1. Introduction 1.1. A workshop and this document 1.2. Framing origins of life science 1.2.1. What do we mean by the origins of life (OoL)? 1.2.2. Defining life 1.2.3. How should we characterize approaches to OoL science? 1.2.4. One path to life or many? 2. A Strategy for Origins of Life Research 2.1. Outcomes-key questions and investigations 2.1.1. Domain 1: Theory 2.1.2. Domain 2: Practice 2.1.3. Domain 3: Process 2.1.4. Domain 4: Future studies 2.2. EON Roadmap 2.3. Relationship to NASA Astrobiology Roadmap and Strategy documents and the European AstRoMap Appendix I Appendix II Supplementary Materials References.


Asunto(s)
Comunicación Interdisciplinaria , Disciplinas de las Ciencias Naturales , Origen de la Vida , Investigación , Consenso , Exobiología , Vida , Redes y Vías Metabólicas , Modelos Teóricos , Fenómenos Físicos , Planetas , ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...