Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Free Radic Biol Med ; 218: 68-81, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574975

RESUMEN

Sarcopenia is associated with reduced quality of life and premature mortality. The sex disparities in the processes underlying sarcopenia pathogenesis, which include mitochondrial dysfunction, are ill-understood and can be decisive for the optimization of sarcopenia-related interventions. To improve the knowledge regarding the sex differences in skeletal muscle aging, the gastrocnemius muscle of young and old female and male rats was analyzed with a focus on mitochondrial remodeling through the proteome profiling of mitochondria-enriched fractions. To the best of our knowledge, this is the first study analyzing sex differences in skeletal muscle mitochondrial proteome remodeling. Data demonstrated that age induced skeletal muscle atrophy and fibrosis in both sexes. In females, however, this adverse skeletal muscle remodeling was more accentuated than in males and might be attributed to an age-related reduction of 17beta-estradiol signaling through its estrogen receptor alpha located in mitochondria. The females-specific mitochondrial remodeling encompassed increased abundance of proteins involved in fatty acid oxidation, decreased abundance of the complexes subunits, and enhanced proneness to oxidative posttranslational modifications. This conceivable accretion of damaged mitochondria in old females might be ascribed to low levels of Parkin, a key mediator of mitophagy. Despite skeletal muscle atrophy and fibrosis, males maintained their testosterone levels throughout aging, as well as their androgen receptor content, and the age-induced mitochondrial remodeling was limited to increased abundance of pyruvate dehydrogenase E1 component subunit beta and electron transfer flavoprotein subunit beta. Herein, for the first time, it was demonstrated that age affects more severely the skeletal muscle mitochondrial proteome of females, reinforcing the necessity of sex-personalized approaches towards sarcopenia management, and the inevitability of the assessment of mitochondrion-related therapeutics.


Asunto(s)
Envejecimiento , Músculo Esquelético , Sarcopenia , Animales , Masculino , Femenino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ratas , Envejecimiento/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patología , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Estradiol/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Fibrosis/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Proteoma/metabolismo , Factores Sexuales , Mitocondrias/metabolismo , Mitocondrias/patología , Mitofagia
2.
Biology (Basel) ; 13(3)2024 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-38534433

RESUMEN

The consumption of non-sugar sweeteners (NSS) has increased during pregnancy. The European Food Safety Agency suggested that steviol glycosides, such as Rebaudioside A (RebA), the major sweetener component of stevia, are safe for humans up to a dose of 4 mg/kg body weight/day. However, the World Health Organization recommended in 2023 the restraint of using NSS, including stevia, at any life stage, highlighting the need to study NSS safety in early periods of development. We aimed to study the mitochondrial and cardiometabolic effects of long-term RebA consumption during the reproductive stage of the life cycle. Female rats were exposed to RebA (4 mg steviol equivalents/kg body weight/day) in the drinking water from 4 weeks before mating until weaning. Morphometry, food and water consumption, glucose and lipid homeostasis, heart structure, function, and mitochondrial function were assessed. RebA showed an atrophic effect in the heart, decreasing cardiomyocyte cross-sectional area and myocardial fibrosis without repercussions on cardiac function. Mitochondrial and myofilamentary functions were not altered. Glucose tolerance and insulin sensitivity were not affected, but fasting glycemia and total plasma cholesterol decreased. This work suggests that this RebA dose is safe for female consumption during the reproductive stage, from a cardiometabolic perspective. However, studies on the effects of RebA exposure on the offspring are mandatory.

3.
Eur J Pharmacol ; 966: 176336, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38272343

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a syndrome characterized by impaired cardiovascular reserve in which therapeutic options are scarce. Our aim was to evaluate the inodilator levosimendan in the ZSF1 obese rat model of HFpEF. Twenty-week-old male Wistar-Kyoto (WKY), ZSF1 lean (ZSF1 Ln) and ZSF1 obese rats chronically treated for 6-weeks with either levosimendan (1 mg/kg/day, ZSF1 Ob + Levo) or vehicle (ZSF1 Ob + Veh) underwent peak-effort testing, pressure-volume (PV) haemodynamic evaluation and echocardiography (n = 7 each). Samples were collected for histology and western blotting. In obese rats, skinned and intact left ventricular (LV) cardiomyocytes underwent in vitro functional evaluation. Seven additional ZSF1 obese rats underwent PV evaluation to assess acute levosimendan effects (10 µg/kg + 0.1 µg/kg/min). ZSF1 Ob + Veh presented all hallmarks of HFpEF, namely effort intolerance, elevated end-diastolic pressures and reduced diastolic compliance as well as increased LV mass and left atrial area, cardiomyocyte hypertrophy and increased interstitial fibrosis. Levosimendan decreased systemic arterial pressures, raised cardiac index, and enhanced LV relaxation and diastolic compliance in both acute and chronic experiments. ZSF1 Ob + Levo showed pronounced attenuation of hypertrophy and interstitial fibrosis alongside increased effort tolerance (endured workload raised 38 %) and maximum O2 consumption. Skinned cardiomyocytes from ZSF 1 Ob + Levo showed a downward shift in sarcomere length-passive tension relationship and intact cardiomyocytes showed decreased diastolic Ca2+ levels and enhanced Ca2+ sensitivity. On molecular grounds, levosimendan enhanced phosphorylation of phospholamban and mammalian target of rapamycin. The observed effects encourage future clinical trials with levosimendan in a broad population of HFpEF patients.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Ratas , Masculino , Animales , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/tratamiento farmacológico , Volumen Sistólico , Simendán/farmacología , Ratas Endogámicas WKY , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Fibrosis , Hipertrofia , Mamíferos
4.
PLoS Genet ; 19(10): e1010979, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37844085

RESUMEN

Secretory cells in glands and the nervous system frequently package and store proteins destined for regulated secretion in dense-core granules (DCGs), which disperse when released from the cell surface. Despite the relevance of this dynamic process to diseases such as diabetes and human neurodegenerative disorders, our mechanistic understanding is relatively limited, because of the lack of good cell models to follow the nanoscale events involved. Here, we employ the prostate-like secondary cells (SCs) of the Drosophila male accessory gland to dissect the cell biology and genetics of DCG biogenesis. These cells contain unusually enlarged DCGs, which are assembled in compartments that also form secreted nanovesicles called exosomes. We demonstrate that known conserved regulators of DCG biogenesis, including the small G-protein Arf1 and the coatomer complex AP-1, play key roles in making SC DCGs. Using real-time imaging, we find that the aggregation events driving DCG biogenesis are accompanied by a change in the membrane-associated small Rab GTPases which are major regulators of membrane and protein trafficking in the secretory and endosomal systems. Indeed, a transition from trans-Golgi Rab6 to recycling endosomal protein Rab11, which requires conserved DCG regulators like AP-1, is essential for DCG and exosome biogenesis. Our data allow us to develop a model for DCG biogenesis that brings together several previously disparate observations concerning this process and highlights the importance of communication between the secretory and endosomal systems in controlling regulated secretion.


Asunto(s)
Proteínas de Drosophila , Exosomas , Animales , Humanos , Masculino , Vesículas de Núcleo Denso , Drosophila , Proteínas de Drosophila/genética , Exosomas/genética , Proteínas , Proteínas de Unión al GTP rab/genética , Factor de Transcripción AP-1
5.
Obes Rev ; 24(11): e13614, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37607837

RESUMEN

The prevalence of obesity has become a global health concern, and severe obesity is associated with various chronic diseases and decreased quality of life. Bariatric surgery has shown success in treating obesity. Nevertheless, some patients experience weight regain and unsatisfactory outcomes. Multidisciplinary interventions have been shown to improve postoperative outcomes. Case managers, often specialized nurses, play a crucial role in patient support and coordination of care. However, the diverse design of case-managing interventions hinders the assessment of their success. Thus, the aim of this review is to identify the most successful structural characteristics of case-managing interventions, with or without the support of e-Health, in the process of perioperative management of bariatric surgery patients. A systematic literature review was conducted following the PRISMA guidelines. PubMed, MEDLINE, EBSCOhost, and CINAHL databases were searched for relevant studies published in the last 10 years. Eligible studies included randomized controlled trials, controlled clinical studies, case studies, or observational studies that evaluated perioperative care in bariatric surgery. The PICO framework was used to frame the search strategy. The initial search yielded 225 articles, of which 10 studies met the inclusion criteria. Nurse-led case-managing interventions with a multidisciplinary approach showed positive results in weight loss, physical activity, and quality of life. Patient-centered care models were found to promote adherence to treatment and patient satisfaction. E-Health technologies improved quality of life but not weight loss. The duration of behavioral interventions and the long-term outcomes after surgery remained unclear. Nurse-led case-management interventions, with a focus on behavioral change and multidisciplinary approaches, show promise in improving outcomes in bariatric surgery patients. Patient-centered care models and longer term interventions may contribute to sustained weight loss and better postoperative outcomes. Further research is needed to determine the optimal duration of interventions and the long-term effects on weight maintenance.


Asunto(s)
Cirugía Bariátrica , Calidad de Vida , Humanos , Rol de la Enfermera , Obesidad , Pérdida de Peso
6.
PLoS Genet ; 19(6): e1010815, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37363926

RESUMEN

In prostate cancer, loss of the tumour suppressor gene, Retinoblastoma (Rb), and consequent activation of transcription factor E2F1 typically occurs at a late-stage of tumour progression. It appears to regulate a switch to an androgen-independent form of cancer, castration-resistant prostate cancer (CRPC), which frequently still requires androgen receptor (AR) signalling. We have previously shown that upon mating, binucleate secondary cells (SCs) of the Drosophila melanogaster male accessory gland (AG), which share some similarities with prostate epithelial cells, switch their growth regulation from a steroid-dependent to a steroid-independent form of Ecdysone Receptor (EcR) control. This physiological change induces genome endoreplication and allows SCs to rapidly replenish their secretory compartments, even when ecdysone levels are low because the male has not previously been exposed to females. Here, we test whether the Drosophila Rb homologue, Rbf, and E2F1 regulate this switch. Surprisingly, we find that excess Rbf activity reversibly suppresses binucleation in adult SCs. We also demonstrate that Rbf, E2F1 and the cell cycle regulators, Cyclin D (CycD) and Cyclin E (CycE), are key regulators of mating-dependent SC endoreplication, as well as SC growth in both virgin and mated males. Importantly, we show that the CycD/Rbf/E2F1 axis requires the EcR, but not ecdysone, to trigger CycE-dependent endoreplication and endoreplication-associated growth in SCs, mirroring changes seen in CRPC. Furthermore, Bone Morphogenetic Protein (BMP) signalling, mediated by the BMP ligand Decapentaplegic (Dpp), intersects with CycD/Rbf/E2F1 signalling to drive endoreplication in these fly cells. Overall, our work reveals a signalling switch, which permits rapid growth of SCs and increased secretion after mating, independently of previous exposure to females. The changes observed share mechanistic parallels with the pathological switch to hormone-independent AR signalling seen in CRPC, suggesting that the latter may reflect the dysregulation of a currently unidentified physiological process.


Asunto(s)
Proteínas de Drosophila , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Animales , Femenino , Masculino , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Endorreduplicación , Ecdisona/genética , Ecdisona/metabolismo , Factor de Transcripción E2F1/genética , Factores de Transcripción/genética , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
7.
Thyroid ; 33(8): 983-996, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37140469

RESUMEN

Background: Low levels of triiodothyronine (T3) are common in patients with heart failure (HF). Our aim was to evaluate the effects of supplementation with low and replacement doses of T3 in an animal model of HF with preserved ejection fraction (HFpEF). Methods: We evaluated four groups: ZSF1 Lean (n = 8, Lean-Ctrl), ZSF1 Obese (rat model of metabolic-induced HFpEF, n = 13, HFpEF), ZSF1 Obese treated with a replacement dose of T3 (n = 8, HFpEF-T3high), and ZSF1 Obese treated with a low-dose of T3 (n = 8, HFpEF-T3low). T3 was administered in drinking water from weeks 13 to 24. The animals underwent anthropometric and metabolic assessments, echocardiography, and peak effort testing with maximum O2 consumption (VO2max) determination at 22 weeks, and a terminal hemodynamic evaluation at 24 weeks. Afterwhile myocardial samples were collected for single cardiomyocyte evaluation and molecular studies. Results: HFpEF animals showed lower serum and myocardial thyroid hormone levels than Lean-Ctrl. Treatment with T3 did not normalize serum T3 levels, but increased myocardial T3 levels to normal levels in the HFpEF-T3high group. Body weight was significantly decreased in both the T3-treated groups, comparing with HFpEF. An improvement in glucose metabolism was observed only in HFpEF-T3high. Both the treated groups had improved diastolic and systolic function in vivo, as well as improved Ca2+ transients and sarcomere shortening and relaxation in vitro. Comparing with HFpEF animals, HFpEF-T3high had increased heart rate and a higher rate of premature ventricular contractions. Animals treated with T3 had higher myocardial expression of calcium transporter ryanodine receptor 2 (RYR2) and α-myosin heavy chain (MHC), with a lower expression of ß-MHC. VO2max was not influenced by treatment with T3. Myocardial fibrosis was reduced in both the treated groups. Three animals died in the HFpEF-T3high group. Conclusions: Treatment with T3 was shown to improve metabolic profile, myocardial calcium handling, and cardiac function. While the low dose was well-tolerated and safe, the replacement dose was associated with increased heart rate, and increased risk of arrhythmias and sudden death. Modulation of thyroid hormones may be a potential therapeutic target in HFpEF; however, it is important to take into account the narrow therapeutic window of T3 in this condition.


Asunto(s)
Insuficiencia Cardíaca , Ratas , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Volumen Sistólico , Triyodotironina/farmacología , Triyodotironina/uso terapéutico , Calcio/metabolismo , Modelos Animales de Enfermedad , Obesidad/complicaciones
8.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166709, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37030522

RESUMEN

Metabolic syndrome (MetS), characterized by a set of conditions that include obesity, hypertension, and dyslipidemia, is associated with increased cardiovascular risk. Exercise training (EX) has been reported to improve MetS management, although the underlying metabolic adaptations that drive its benefits remain poorly understood. This work aims to characterize the molecular changes induced by EX in skeletal muscle in MetS, focusing on gastrocnemius metabolic remodelling. 1H NMR metabolomics and molecular assays were employed to assess the metabolic profile of skeletal muscle tissue from lean male ZSF1 rats (CTL), obese sedentary male ZSF1 rats (MetS-SED), and obese male ZF1 rats submitted to 4 weeks of treadmill EX (5 days/week, 60 min/day, 15 m/min) (MetS-EX). EX did not counteract the significant increase of body weight and circulating lipid profile, but had an anti-inflammatory effect and improved exercise capacity. The decreased gastrocnemius mass observed in MetS was paralleled with glycogen degradation into small glucose oligosaccharides, with the release of glucose-1-phosphate, and an increase in glucose-6-phosphate and glucose levels. Moreover, sedentary MetS animals' muscle exhibited lower AMPK expression levels and higher amino acids' metabolism such as glutamine and glutamate, compared to lean animals. In contrast, the EX group showed changes suggesting an increase in fatty acid oxidation and oxidative phosphorylation. Additionally, EX mitigated MetS-induced fiber atrophy and fibrosis in the gastrocnemius muscle. EX had a positive effect on gastrocnemius metabolism by enhancing oxidative metabolism and, consequently, reducing susceptibility to fatigue. These findings reinforce the importance of prescribing EX programs to patients with MetS.


Asunto(s)
Síndrome Metabólico , Ratas , Masculino , Animales , Síndrome Metabólico/terapia , Síndrome Metabólico/metabolismo , Obesidad/metabolismo , Músculo Esquelético/metabolismo , Glucosa/metabolismo , Peso Corporal
9.
J Extracell Vesicles ; 12(3): e12311, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36872252

RESUMEN

Exosomes are secreted nanovesicles with potent signalling activity that are initially formed as intraluminal vesicles (ILVs) in late Rab7-positive multivesicular endosomes, and also in recycling Rab11a-positive endosomes, particularly under some forms of nutrient stress. The core proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) participate in exosome biogenesis and ILV-mediated destruction of ubiquitinylated cargos. Accessory ESCRT-III components have reported roles in ESCRT-III-mediated vesicle scission, but their precise functions are poorly defined. They frequently only appear essential under stress. Comparative proteomics analysis of human small extracellular vesicles revealed that accessory ESCRT-III proteins, CHMP1A, CHMP1B, CHMP5 and IST1, are increased in Rab11a-enriched exosome preparations. We show that these proteins are required to form ILVs in Drosophila secondary cell recycling endosomes, but unlike core ESCRTs, they are not involved in degradation of ubiquitinylated proteins in late endosomes. Furthermore, CHMP5 knockdown in human HCT116 colorectal cancer cells selectively inhibits Rab11a-exosome production. Accessory ESCRT-III knockdown suppresses seminal fluid-mediated reproductive signalling by secondary cells and the growth-promoting activity of Rab11a-exosome-containing EVs from HCT116 cells. We conclude that accessory ESCRT-III components have a specific, ubiquitin-independent role in Rab11a-exosome generation, a mechanism that might be targeted to selectively block pro-tumorigenic activities of these vesicles in cancer.


Asunto(s)
Exosomas , Vesículas Extracelulares , Humanos , Endosomas , Transporte Biológico , Complejos de Clasificación Endosomal Requeridos para el Transporte
10.
Int J Mol Sci ; 25(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38203721

RESUMEN

The salivary glands play a central role in the secretion of saliva, whose composition and volume affect oral and overall health. A lesser-explored dimension encompasses the possible changes in salivary gland proteomes in response to fluctuations in sex hormone levels. This study aimed to examine the effects of chronic exposure to testosterone on salivary gland remodeling, particularly focusing on proteomic adaptations. Therefore, male Wistar rats were implanted with subcutaneous testosterone-releasing devices at 14 weeks of age. Their submandibular glands were histologically and molecularly analyzed 47 weeks later. The results underscored a significant increase in gland mass after testosterone exposure, further supported by histologic evidence of granular duct enlargement. Despite increased circulating sex hormones, there was no detectable shift in the tissue levels of estrogen alpha and androgen receptors. GeLC-MS/MS and subsequent bioinformatics identified 308 proteins in the submandibular glands, 12 of which were modulated by testosterone. Of note was the pronounced upregulation of Klk3 and the downregulation of Klk6 and Klk7 after testosterone exposure. Protein-protein interaction analysis with the androgen receptor suggests that Klk3 is a potential target of androgenic signaling, paralleling previous findings in the prostate. This exploratory analysis sheds light on the response of salivary glands to testosterone exposure, providing proteome-level insights into the associated weight and histological changes.


Asunto(s)
Proteoma , Testosterona , Masculino , Ratas , Animales , Glándula Submandibular , Proteómica , Espectrometría de Masas en Tándem , Ratas Wistar , Congéneres de la Testosterona
11.
Biomedicines ; 10(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36359302

RESUMEN

This study aimed to evaluate if the treatment with metformin affects the morphologic structure, endothelial function, angiogenesis, inflammation and oxidation-responsive pathways in the heart of mice with surgically induced endometriosis. B6CBA/F1 mice (n = 37) were divided into four groups; Sham (S), Metformin (M), Endometriosis (E) and Metformin/Endometriosis (ME). The cross-sectional area of cardiomyocytes was assessed after Hematoxylin-Eosin staining and fibrosis after Picrosirius-Red staining. ET-1, nitric oxide synthases-iNOS and eNOS, and VEGF and VEGFR-2 were detected by immunofluorescence. Semi-quantification of ET-1, eNOS, VEGF, NF-kB, Ikßα and KEAP-1 was performed by Western blotting. MIR199a, MIR16-1, MIR18a, MIR20a, MIR155, MIR200a, MIR342, MIR24-1 and MIR320a were quantified by Real-Time qPCR. The interaction of endometriosis and metformin effects was assessed by a two-way ANOVA test. Compared with the other groups, M-treated mice presented a higher cross-sectional area of cardiomyocytes. Heart fibrosis increased with endometriosis. Treatment of endometriosis with metformin in the ME group downregulates ET-1 and upregulates eNOS expression comparatively with the E group. However, metformin failed to mitigate NF-kB expression significantly incremented by endometriosis. The expression of MIR199a, MIR16-1 and MIR18a decreased with endometriosis, whereas MIR20a showed an equivalent trend, altogether reducing cardioprotection. In summary, metformin diminished endometriosis-associated endothelial dysfunction but did not mitigate the increase in NF-kB expression and cardiac fibrosis in mice with endometriosis.

13.
Nat Commun ; 12(1): 6666, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795295

RESUMEN

Extracellular vesicles (EVs) are biological nanoparticles with important roles in intercellular communication, and potential as drug delivery vehicles. Here we demonstrate a role for the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in EV assembly and secretion. We observe high levels of GAPDH binding to the outer surface of EVs via a phosphatidylserine binding motif (G58), which promotes extensive EV clustering. Further studies in a Drosophila EV biogenesis model reveal that GAPDH is required for the normal generation of intraluminal vesicles in endosomal compartments, and promotes vesicle clustering. Fusion of the GAPDH-derived G58 peptide to dsRNA-binding motifs enables highly efficient loading of small interfering RNA (siRNA) onto the EV surface. Such vesicles efficiently deliver siRNA to multiple anatomical regions of the brain in a Huntington's disease mouse model after systemic injection, resulting in silencing of the huntingtin gene in different regions of the brain.


Asunto(s)
Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Células Madre Mesenquimatosas/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/ultraestructura , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Fosfatidilserinas/metabolismo , Unión Proteica , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética
14.
Exp Physiol ; 106(12): 2457-2471, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34676608

RESUMEN

NEW FINDINGS: What is the central question of this study? Right ventricle (RV) dysfunction is highly prevalent in heart failure with preserved ejection fraction (HFpEF), nearly doubling the risk of death: what are the RV functional and structural changes in HFpEF and how does aerobic exercise impact them? What is the main finding and its importance? The HFpEF ZSF1 rat model presents RV structural and functional changes mimicking the human condition. Aerobic exercise prevented the decline in V̇O2max , lowered surrogate markers of RV overload (e.g., higher mean and maximum systolic pressure) and improved diastolic dysfunction (e.g., end-diastolic pressure and relaxation time constant). This emphasizes the importance of using exercise to manage HFpEF. ABSTRACT: Right ventricle (RV) dysfunction is highly prevalent in heart failure with preserved ejection fraction (HFpEF) and is a marker of poor prognosis. We assessed the obese ZSF1 rat model of HFpEF to ascertain if these animals also develop RV dysfunction and evaluated whether aerobic exercise could prevent this. Obese ZSF1 rats were randomly allocated to an aerobic exercise training group (n = 7; treadmill running, 5 days/week, 60 min/day, 15 m/min for 5 weeks) or to a sedentary group (n = 7). We used lean ZSF1 rats (n = 7) as the control group. After 5 weeks, rats were submitted to an exercise tolerance test and invasive haemodynamic evaluation, killed and samples from the RV collected for histological analysis. Obese sedentary ZSF1 rats showed lower V̇O2max , RV pressure overload (e.g., higher mean and maximum systolic pressure) and diastolic dysfunction (e.g., higher minimum and end-diastolic pressure and relaxation time constant), paralleled by RV cardiomyocyte hypertrophy. Except for cardiomyocyte hypertrophy, aerobic exercise prevented these functional changes. Our data support that this model of HFpEF shows functional and structural changes in the RV that resemble the human HFpEF phenotype, reinforcing its utility to understand this pathophysiology and to adress novel therapeutic targets to manage HFpEF. In addition, we showed that aerobic exercise is cardioprotective for the RV. A deeper knowledge of the mechanisms underlying the benefits of aerobic exercise could also lead to the identification of therapeutic targets to be further explored.


Asunto(s)
Insuficiencia Cardíaca , Animales , Diástole/fisiología , Ventrículos Cardíacos , Hemodinámica , Ratas , Volumen Sistólico/fisiología
15.
J Cardiovasc Pharmacol Ther ; 26(6): 690-701, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34328815

RESUMEN

Although decreased protein kinase G (PKG) activity was proposed as potential therapeutic target in heart failure with preserved ejection fraction (HFpEF), randomized clinical trials (RCTs) with type-5 phosphodiesterase inhibitors (PDE5i) showed neutral results. Whether specific subgroups of HFpEF patients may benefit from PDE5i remains to be defined. Our aim was to test chronic sildenafil therapy in the young male ZSF1 obese rat model of HFpEF with severe hypertension and metabolic syndrome. Sixteen-week-old ZSF1 obese rats were randomly assigned to receive sildenafil 100 mg·Kg-1·d-1 dissolved in drinking water (ZSF1 Ob SIL, n = 8), or placebo (ZSF1 Ob PL, n = 8). A group of Wistar-Kyoto rats served as control (WKY, n = 8). Four weeks later animals underwent effort tests, glucose metabolism studies, hemodynamic evaluation, and samples were collected for aortic ring preparation, left ventricular (LV) myocardial adenosine triphosphate (ATP) quantification, immunoblotting and histology. ZSF1 Ob PL rats showed systemic hypertension, aortic stiffening, impaired LV relaxation and increased LV stiffness, with preserved ejection fraction and cardiac index. Their endurance capacity was decreased as assessed by maximum workload and peak oxygen consumption (V˙O2) and respiratory quotient were increased, denoting more reliance on anaerobic metabolism. Additionally, ATP levels were decreased. Chronic sildenafil treatment attenuated hypertension and decreased LV stiffness, modestly enhancing effort tolerance with a concomitant increase in peak, ATP levels and VASP phosphorylation. Chronic sildenafil therapy in this model of HFpEF of the young male with extensive and poorly controlled comorbidities has beneficial cardiovascular effects which support RCTs in HFpEF patient subgroups with similar features.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/fisiopatología , Citrato de Sildenafil/farmacología , Vasodilatadores/farmacología , Animales , Prueba de Tolerancia a la Glucosa , Corazón/efectos de los fármacos , Insuficiencia Cardíaca/complicaciones , Masculino , Síndrome Metabólico/complicaciones , Obesidad , Ratas , Ratas Endogámicas WKY , Volumen Sistólico/efectos de los fármacos
16.
Eur J Vasc Endovasc Surg ; 61(6): 1008-1016, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33858751

RESUMEN

OBJECTIVE: Perivascular adipose tissue (PVAT) contributes to vascular homeostasis and is increasingly linked to vascular pathology. PVAT density and volume were associated with abdominal aortic aneurysm (AAA) presence and dimensions on imaging. However, mechanisms underlying the role of PVAT in AAA have not been clarified. This study aimed to explore differences in PVAT from AAA using gene expression and functional tests. METHODS: Human aortic PVAT and control subcutaneous adipose tissue were collected during open AAA surgery. Gene analyses and functional tests were performed. The control group consisted of healthy aorta from non-living renal transplant donors. Gene expression tests were performed to study genes potentially involved in various inflammatory processes and AAA related genes. Live PVAT and subcutaneous adipose tissue (SAT) from AAA were used for ex vivo co-culture with smooth muscle cells (SMCs) retrieved from non-pathological aortas. RESULTS: Adipose tissue was harvested from 27 AAA patients (n [gene expression] = 22, n [functional tests] = 5) and five control patients. An increased inflammatory gene expression of PTPRC (p = .008), CXCL8 (p = .033), LCK (p = .003), CCL5 (p = .004) and an increase in extracellular matrix breakdown marker MMP9 (p = .016) were found in AAA compared with controls. Also, there was a decreased anti-inflammatory gene expression of PPARG in AAA compared with controls (p = .040). SMC co-cultures from non-pathological aortas with PVAT from AAA showed increased MMP9 (p = .033) and SMTN (p = .008) expression and SAT increased SMTN expression in these SMC. CONCLUSION: The data revealed that PVAT from AAA shows an increased pro-inflammatory and matrix metallopeptidase gene expression and decreased anti-inflammatory gene expression. Furthermore, increased expression of genes involved in aneurysm formation was found in healthy SMC co-culture with PVAT of AAA patients. Therefore, PVAT from AAA might contribute to inflammation of the adjacent aortic wall and thereby plays a possible role in AAA pathophysiology. These proposed pathways of inflammatory induction could reveal new therapeutic targets in AAA treatment.


Asunto(s)
Aneurisma de la Aorta Abdominal/genética , Quimiocina CCL5/genética , Interleucina-8/genética , Antígenos Comunes de Leucocito/genética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Metaloproteinasa 9 de la Matriz/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Anciano , Anciano de 80 o más Años , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Estudios de Casos y Controles , Quimiocina CCL5/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Femenino , Humanos , Interleucina-8/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Persona de Mediana Edad , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495334

RESUMEN

Seminal fluid plays an essential role in promoting male reproductive success and modulating female physiology and behavior. In the fruit fly, Drosophila melanogaster, Sex Peptide (SP) is the best-characterized protein mediator of these effects. It is secreted from the paired male accessory glands (AGs), which, like the mammalian prostate and seminal vesicles, generate most of the seminal fluid contents. After mating, SP binds to spermatozoa and is retained in the female sperm storage organs. It is gradually released by proteolytic cleavage and induces several long-term postmating responses, including increased ovulation, elevated feeding, and reduced receptivity to remating, primarily signaling through the SP receptor (SPR). Here, we demonstrate a previously unsuspected SPR-independent function for SP. We show that, in the AG lumen, SP and secreted proteins with membrane-binding anchors are carried on abundant, large neutral lipid-containing microcarriers, also found in other SP-expressing Drosophila species. These microcarriers are transferred to females during mating where they rapidly disassemble. Remarkably, SP is a key microcarrier assembly and disassembly factor. Its absence leads to major changes in the seminal proteome transferred to females upon mating. Males expressing nonfunctional SP mutant proteins that affect SP's binding to and release from sperm in females also do not produce normal microcarriers, suggesting that this male-specific defect contributes to the resulting widespread abnormalities in ejaculate function. Our data therefore reveal a role for SP in formation of seminal macromolecular assemblies, which may explain the presence of SP in Drosophila species that lack the signaling functions seen in Dmelanogaster.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lípidos/química , Microesferas , Semen/química , Animales , Proteínas de Drosophila/genética , Femenino , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Mutación/genética , Proteoma/metabolismo , Conducta Sexual Animal , Especificidad de la Especie
18.
Mol Biol Evol ; 38(2): 437-448, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32931587

RESUMEN

In the last 240,000 years, males of the Drosophila simulans species clade have evolved striking differences in the morphology of their epandrial posterior lobes and claspers (surstyli). These appendages are used for grasping the female during mating and so their divergence is most likely driven by sexual selection. Mapping studies indicate a highly polygenic and generally additive genetic basis for these morphological differences. However, we have limited understanding of the gene regulatory networks that control the development of genital structures and how they evolved to result in this rapid phenotypic diversification. Here, we used new D. simulans/D. mauritiana introgression lines on chromosome arm 3L to generate higher resolution maps of posterior lobe and clasper differences between these species. We then carried out RNA-seq on the developing genitalia of both species to identify the expressed genes and those that are differentially expressed between the two species. This allowed us to test the function of expressed positional candidates during genital development in D. melanogaster. We identified several new genes involved in the development and possibly the evolution of these genital structures, including the transcription factors Hairy and Grunge. Furthermore, we discovered that during clasper development Hairy negatively regulates tartan (trn), a gene known to contribute to divergence in clasper morphology. Taken together, our results provide new insights into the regulation of genital development and how this has evolved between species.


Asunto(s)
Evolución Biológica , Drosophila simulans/genética , Animales , Drosophila simulans/anatomía & histología , Drosophila simulans/crecimiento & desarrollo , Drosophila simulans/metabolismo , Genitales Masculinos/anatomía & histología , Genitales Masculinos/crecimiento & desarrollo , Genitales Masculinos/metabolismo , Masculino
19.
Parasitol Int ; 80: 102211, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33164870

RESUMEN

Dioctophymosis is the disease caused by the nematode Dioctophyme renale, normally found parasitizing the right kidney of dogs. The absence of symptoms is frequent in parasitized animals. The surgical procedures are commonly performed to treat this disease. This work describes a case involving a canine with renal and ectopic parasitosis in the abdominal and thoracic regions. A mixed-breed female dog, approximately four months old, was diagnosed by ultrasound as for the presence of D. renale in the right kidney and abdominal and thoracic cavities. The animal underwent exploratory celiotomy, nephrectomy of the parasitized kidney, and transdiaphragmatic thoracotomy to remove the thoracic parasite, with a single abdominal surgical wound and excellent postoperative recovery. Several reports of ectopic parasitosis are found, however, the thoracic finding is unusual, and curative therapeutic transdiaphragmatic thoracotomy for dioctophymosis in dogs has not been previously described.


Asunto(s)
Cavidad Abdominal/parasitología , Dioctophymatoidea/aislamiento & purificación , Enfermedades de los Perros/diagnóstico , Infecciones por Enoplida/veterinaria , Cavidad Torácica/parasitología , Animales , Enfermedades de los Perros/parasitología , Perros , Infecciones por Enoplida/diagnóstico , Infecciones por Enoplida/parasitología , Femenino , Riñón/parasitología , Ultrasonografía/veterinaria
20.
Motriz (Online) ; 27: e10210015220, 2021. graf
Artículo en Inglés | LILACS | ID: biblio-1154889

RESUMEN

Abstract Aims: To introduce a platform called "InteractiveLab" (ILab) for collecting and analyzing ball passing networks during soccer games. Methods: The software was organized to collect data through a mobile interface and touch screen and simultaneously access that data from a remote database, allowing the automated acquisition, storage, and processing of data during games through an application from the web. The analysis is based on the concept of social networks, characterized by the interaction of players through passing exchanges. Results: This descriptive study presents the construction architecture and functioning of the developed software. It also presents the results of intra- and inter-rater reliability and a comparison with the manual collection method. Data were extracted and viewed according to the attacking unit classifications, with the following four outcomes: (a) interception, (b) lost ball, (c) incompletion, and (d) completion. This classification allows for the configuration of the data for a more precise analysis. Some limitations were highlighted, as well as future projections for the improvement of applications and analysis of the interactions network in the context of soccer. Conclusion: It is concluded that the InteractiveLab platform is a viable and beneficial tool that offers new possibilities for analysing performance in soccer. Moreover, given the lack of solutions that work similarly, this product also has market potential.


Asunto(s)
Rendimiento Atlético , Atletas , Tecnología/métodos , Recolección de Datos , Red Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...