Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(14): 9564-9574, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557024

RESUMEN

The serotonergic transmitter system plays fundamental roles in the nervous system in neurotransmission, synaptic plasticity, pathological processes, and therapeutic effects of antidepressants and psychedelics, as well as in the gastrointestinal and circulatory systems. We introduce a novel small molecule fluorescent agent, termed SERTlight, that specifically labels serotonergic neuronal cell bodies, dendrites, and axonal projections as a serotonin transporter (SERT) fluorescent substrate. SERTlight was developed by an iterative molecular design process, based on an aminoethyl-quinolone system, to integrate structural elements that impart SERT substrate activity, sufficient fluorescent brightness, and a broad absence of pharmacological activity, including at serotonin (5-hydroxytryptamine, 5HT) receptors, other G protein-coupled receptors (GPCRs), ion channels, and monoamine transporters. The high labeling selectivity is not achieved by high affinity binding to SERT itself but rather by a sufficient rate of SERT-mediated transport of SERTlight, resulting in accumulation of these molecules in 5HT neurons and yielding a robust and selective optical signal in the mammalian brain. SERTlight provides a stable signal, as it is not released via exocytosis nor by reverse SERT transport induced by 5HT releasers such as MDMA. SERTlight is optically, pharmacologically, and operationally orthogonal to a wide range of genetically encoded sensors, enabling multiplexed imaging. SERTlight enables labeling of distal 5HT axonal projections and simultaneous imaging of the release of endogenous 5HT using the GRAB5HT sensor, providing a new versatile molecular tool for the study of the serotonergic system.


Asunto(s)
Colorantes Fluorescentes , Serotonina , Animales , Serotonina/metabolismo , Colorantes Fluorescentes/metabolismo , Neuronas/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo
2.
ACS Chem Neurosci ; 13(8): 1251-1262, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35400149

RESUMEN

Optical imaging of changes in the membrane potential of living cells can be achieved by means of fluorescent voltage-sensitive dyes (VSDs). A particularly challenging task is to efficiently deliver these highly lipophilic probes to specific neuronal subpopulations in brain tissue. We have tackled this task by designing a solubilizing, hydrophilic polymer platform that carries a high-affinity ligand for a membrane protein marker of interest and a fluorescent VSD. Here, we disclose an improved design of polymer-supported probes for chemical, nongenetic targeting of voltage sensors to axons natively expressing the dopamine transporter in ex vivo mouse brain tissue. We first show that for negatively charged rhodol VSDs functioning on the photoinduced electron transfer principle, poly(ethylene glycol) as a carrier enables targeting with higher selectivity than the polysaccharide dextran in HEK cell culture. In the same experimental setting, we also demonstrate that incorporation of an azetidine ring into the rhodol chromophore substantially increases the brightness and voltage sensitivity of the respective VSD. We show that the superior properties of the optimized sensor are transferable to recording of electrically evoked activity from dopaminergic axons in mouse striatal slices after averaging of multiple trials. Finally, we suggest the next milestones for the field to achieve single-scan recordings with nongenetically targeted VSDs in native brain tissue.


Asunto(s)
Neuronas Dopaminérgicas , Colorantes Fluorescentes , Animales , Colorantes Fluorescentes/química , Potenciales de la Membrana/fisiología , Ratones , Polímeros , Xantonas
3.
ACS Omega ; 5(43): 27783-27788, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33163761

RESUMEN

A decacationic water-soluble pillar[5]arene possessing a nonsolvated hydrophobic core has been designed and synthesized. This supramolecular host is capable of binding xenon, as evidenced by hyperCEST depletion experiments. Fluorescence-based studies also demonstrate that xenon binds into the cavity of the pillararene with an association constant of 4.6 × 103 M-1. These data indicate that the water-soluble pillararene is a potential scaffold for building contrast agents that can be detected by xenon-129 magnetic resonance imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...