Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Image Process ; 30: 4828-4839, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33945477

RESUMEN

Raindrops adhered to a glass window or camera lens appear in various blurring degrees and resolutions due to the difference in the degrees of raindrops aggregation. The removal of raindrops from a rainy image remains a challenging task because of the density and diversity of raindrops. The abundant location and blur level information are strong prior guide to the task of raindrop removal. However, existing methods use a binary mask to locate and estimate the raindrop with the value 1 (adhesion of raindrops) and 0 (no adhesion), which ignores the diversity of raindrops. Meanwhile, it is noticed that different scale versions of a rainy image have similar raindrop patterns, which makes it possible to employ such complementary information to represent raindrops. In this work, we first propose a soft mask with the value in [-1,1] indicating the blurring level of the raindrops on the background, and explore the positive effect of the blur degree attribute of raindrops on the task of raindrop removal. Secondly, we explore the multi-scale fusion representation for raindrops based on the deep features of the input multi-scale images. The framework is termed uncertainty guided multi-scale attention network (UMAN). Specifically, we construct a multi-scale pyramid structure and introduce an iterative mechanism to extract blur-level information about raindrops to guide the removal of raindrops at different scales. We further introduce the attention mechanism to fuse the input image with the blur-level information, which will highlight raindrop information and reduce the effects of redundant noise. Our proposed method is extensively evaluated on several benchmark datasets and obtains convincing results.

2.
Int J Mol Sci ; 19(1)2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29271922

RESUMEN

The quantitative structure-activity relationship (QSAR) model searches for a reliable relationship between the chemical structure and biological activities in the field of drug design and discovery. (1) Background: In the study of QSAR, the chemical structures of compounds are encoded by a substantial number of descriptors. Some redundant, noisy and irrelevant descriptors result in a side-effect for the QSAR model. Meanwhile, too many descriptors can result in overfitting or low correlation between chemical structure and biological bioactivity. (2) Methods: We use novel log-sum regularization to select quite a few descriptors that are relevant to biological activities. In addition, a coordinate descent algorithm, which uses novel univariate log-sum thresholding for updating the estimated coefficients, has been developed for the QSAR model. (3) Results: Experimental results on artificial and four QSAR datasets demonstrate that our proposed log-sum method has good performance among state-of-the-art methods. (4) Conclusions: Our proposed multiple linear regression with log-sum penalty is an effective technique for both descriptor selection and prediction of biological activity.


Asunto(s)
Algoritmos , Diseño de Fármacos , Relación Estructura-Actividad Cuantitativa , Animales , Simulación por Computador , Humanos , Modelos Lineales , Modelos Biológicos
3.
Sci Rep ; 7(1): 13053, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29026100

RESUMEN

Gene selection is an attractive and important task in cancer survival analysis. Most existing supervised learning methods can only use the labeled biological data, while the censored data (weakly labeled data) far more than the labeled data are ignored in model building. Trying to utilize such information in the censored data, a semi-supervised learning framework (Cox-AFT model) combined with Cox proportional hazard (Cox) and accelerated failure time (AFT) model was used in cancer research, which has better performance than the single Cox or AFT model. This method, however, is easily affected by noise. To alleviate this problem, in this paper we combine the Cox-AFT model with self-paced learning (SPL) method to more effectively employ the information in the censored data in a self-learning way. SPL is a kind of reliable and stable learning mechanism, which is recently proposed for simulating the human learning process to help the AFT model automatically identify and include samples of high confidence into training, minimizing interference from high noise. Utilizing the SPL method produces two direct advantages: (1) The utilization of censored data is further promoted; (2) the noise delivered to the model is greatly decreased. The experimental results demonstrate the effectiveness of the proposed model compared to the traditional Cox-AFT model.


Asunto(s)
Neoplasias/mortalidad , Aprendizaje Automático Supervisado , Análisis de Supervivencia , Algoritmos , Humanos , Modelos de Riesgos Proporcionales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...