Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2400784, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896790

RESUMEN

Immunotherapy has emerged as a powerful weapon against lung cancer, yet only a fraction of patients respond to the treatment. Poly(I:C) (PIC) effectively triggers both innate and adaptive immunity. It can also induce immunogenic cell death (ICD) in tumor cells. However, its efficacy is hindered by its instability in vivo and limited cellular uptake. To address this, PIC is encapsulated in cRGD-functionalized polymersomes (t-PPIC), which significantly increases its stability and uptake, thus activating dendritic cells (DCs) and inducing apoptosis of lung tumor cells in vitro. In a murine LLC lung tumor model, systemic administration of t-PPIC effectively suppresses tumor growth and leads to survival benefits, with 40% of the mice becoming tumor-free. Notably, t-PPIC provokes stronger apoptosis and ICD in tumor tissue and elicits a more potent stimulation of DCs, recruitment of natural killer (NK) cells, and activation of CD8+ T cells, compared to free PIC and nontargeted PPIC controls. Furthermore, when combined with immune checkpoint inhibitors or radiotherapy, t-PPIC amplifies the antitumor immune response, resulting in complete regression in 60% of the mice. These compelling findings underscore the potential of integrin-targeted polymersomal PIC to enhance antitumor immunity by simultaneously inducing ICD and systemic immune activation.

3.
Adv Healthc Mater ; : e2303690, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38458152

RESUMEN

Cancer vaccines provide a potential strategy to cure patients. Their clinical utilization and efficacy is, however, limited by incomplete coverage of tumor neoantigens and unspecific and restricted activation of dendritic cells (DCs). Tumor cell lysates (TCLs) containing a broad spectrum of neoantigens, while are considered ideal in formulating personalized vaccines, induce generally poor antigen presentation and transient antitumor immune response. Here, intelligent polymersomal nanovaccines (PNVs) that quantitatively coload, efficiently codeliver, and responsively corelease TCL and CpG adjuvant to lymph node (LN) DCs are developed to boost antigen presentation and to induce specific and robust antitumor immunity. PNVs carrying CpG and ovalbumin (OVA) markedly enhance the maturation, antigen presentation, and downstream T cell activation ability of bone-marrow-derived dendritic cells and induce strong systemic immune response after tail base injection. Remarkably, PNVs carrying CpG and TCL cure 85% of B16-F10 melanoma-bearing mice and generate long-lasting anticancer immune memory at a low dose, protecting all cured mice from tumor rechallenge. These LN-directed PNVs being highly versatile and straightforward opens a new door for personalized cancer vaccines.

4.
Biomacromolecules ; 24(11): 5353-5363, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37871289

RESUMEN

The silencing of disease-causing genes with small interfering RNA (siRNA) offers a particularly effective therapeutic strategy for different disorders; however, its clinical efficacy relies on the development of nontoxic and tissue-specific delivery vehicles. Herein, we report that bioresponsive chimaeric polymersomes (BCP) with short poly(ethylenimine) as inner shell mediate highly efficacious, sustained, and liver-specific siRNA transfection in vivo. BCP exhibited remarkable encapsulation efficiencies of siRNA (95-100%) at siRNA-feeding contents of 15-25 wt %, to afford stable, small-sized (55-64 nm), and neutral-charged BCP-siRNA. siApoB-Loaded BCP (BCP-siApoB) outperformed lipofectamine counterparts and silenced 93% of ApoB mRNA in HepG2 cells at 50 nM siApoB without inducing cytotoxicity. Intriguingly, the in vivo studies using wild-type C57BL/6 mice revealed that BCP-siApoB preferentially accumulated in the liver, and a single dose of 4.5 mg/kg achieved over 90% downregulation of ApoB mRNA for at least 10 days. The systemic administration of BCP-siApoB at 4.5 mg/kg every 2 weeks or 1.5 mg/kg weekly in diet-induced obese mice could also achieve up to 80% silencing of ApoB mRNA. The liver specificity and silencing efficacy of BCP-siApoB could further be improved by decorating it with the trivalent N-acetylgalactosamine (TriGalNAc) ligand. These bioresponsive and liver-specific chimaeric polymersomes provide an enabling technology for siRNA therapy of various liver-related diseases.


Asunto(s)
Apolipoproteínas B , Hígado , Animales , Ratones , ARN Interferente Pequeño/genética , Ratones Endogámicos C57BL , Apolipoproteínas B/genética , Transfección , ARN Mensajero
5.
Acta Biomater ; 170: 228-239, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37634830

RESUMEN

Actively targeted nanomedicines though conceptually attractive for tumor therapy are extremely hard to realize due to problems of premature drug leakage, excessive liver accretion, inadequate tumor uptake, and/or retarded drug release inside tumor cells. Here, we systemically studied the influence of disulfide crosslinking on the in vitro and in vivo performance of integrin-targeting micellar docetaxel (t-MDTX). Of note, t-M5DTX with a high disulfide content was clearly advantageous in terms of stability, intracellular drug release, anti-tumor activity toward αVß3-overexpressing A549 cells, blood circulation and therapeutic efficacy in orthotopic A549-luc lung tumor-bearing mice. t-MDTX induced extraordinary tumor targetability with tumor-to-normal tissue ratios of 1.7-8.3. Further studies indicated that t-M5DTX could effectively eradicate αVß3-overexpressing lung and prostate cancer patient-derived xenografts (PDX), in which ca. 80% mice became tumor-free. This integrin-targeting disulfide-crosslinked micellar docetaxel emerges as a promising actively targeted nanoformulation for tumor therapy. STATEMENT OF SIGNIFICANCE: Nanomedicines have a great potential in treating advanced tumor patients; however, their tumor-targeting ability and therapeutic efficacy remain unsatisfactory. In addition to PEGylation and ligand selection, particle size, stability and drug release behavior are also critical to their performance in vivo. In this paper, we find that small and cRGD-guided disulfide-crosslinked micellar docetaxel (t-MDTX) induces superior tumor uptake and retention but without increasing liver burden, leading to extraordinary selectivity and inhibition of αvß3 overexpressing lung tumors. t-MDTX is further shown to effectively treat αvß3-positive patient-derived tumor models, lending it a high potential for clinical translation.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Docetaxel/farmacología , Micelas , Integrinas , Disulfuros , Xenoinjertos , Péptidos Cíclicos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Pulmón , Línea Celular Tumoral
6.
Acta Biomater ; 168: 529-539, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37451658

RESUMEN

Pancreatic cancer (PC) stands as a most deadly malignancy due to few effective treatments in the clinics. KRAS G12D mutation is a major driver for most PC cases, and silencing of KRAS G12D is considered as a potential therapeutic strategy for PC, which is nevertheless crippled by lacking a pragmatic delivery system for siRNA against KRAS G12D (siKRAS). Here, we report that cRGD peptide-modified bioresponsive chimaeric polymersomes (cRGD-BCP) mediate highly efficient siKRAS delivery to PANC-1 tumor, potently silencing KRAS G12D mRNA in tumor cells and effectively suppressing PC tumor growth in mice. cRGD-BCP exhibited remarkable encapsulation of siKRAS (loading content > 14 wt.%, loading efficiency > 90%) to form stable and uniform (ca. 68 nm) nanovesicles (cRGD-BCP-siKRAS). Of note, cRGD density greatly impacted the cellular uptake and silencing efficiency of cRGD-BCP-siKRAS in PANC-1 cells, in which an optimal cRGD density of 15.7 mol.% achieved 3.7- and 3.6-fold enhancement of internalization and gene silencing, respectively, compared with non-targeted BCP-siKRAS. cRGD-BCP-siKRAS was practically intact after 3-week storage at 4°C. Intriguingly, cRGD-BCP-siKRAS markedly enhanced the uptake of siKRAS in PANC-1 tumor, and at a siKRAS dose of 3 mg/kg knocked down 90% KRAS G12D gene, resulting in potent tumor inhibition and extraordinary survival benefits (median survival time: 101 days versus 38 (PBS group) and 59 days (BCP-siKRAS)) with 40% mice achieved complete regression. It appears that cRGD-mediated nanodelivery of siKRAS provides a potential cure for pancreatic cancer. STATEMENT OF SIGNIFICANCE: Small interfering RNA (siRNA) emerges as a specific and powerful biopharmaceuticals against cancers; however, inefficient in vivo delivery impedes its clinical translation. In spite of the fact that KRAS G12D mutation has been identified as a major driver for most pancreatic cancer, its notorious non-druggability renders little success on development of molecular targeted drugs. Pancreatic cancer is deemed as current king-of-cancer. Here, we show that cyclic RGD peptide installed bioresponsive polymersomes are able to efficiently deliver siRNA against KRAS G12D to pancreatic tumor, resulting in 90% gene knock-down and effective tumor inhibition. Strikingly, two out of five mice have been cured. This targeted nanodelivery of siRNA provides a high-efficacy treatment strategy for pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Ratones , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Péptidos/uso terapéutico , Mutación , Línea Celular Tumoral , Neoplasias Pancreáticas
7.
J Control Release ; 360: 304-315, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356754

RESUMEN

Nanomedicines while showing a great potential in improving the performance of chemotherapeutics like docetaxel (DTX) are distressed by a high liver deposition and poor tumor penetration, which might not only cause liver toxicity but also moderate therapeutic effect. Herein, we report that cRGD-directed 24 nm disulfide-crosslinked micellar docetaxel (cRGD-MDTX) presents low liver accumulation, high tumor uptake, and deep tumor penetration, leading to the potent suppression of different solid tumors. cRGD-MDTX was optimized with a cRGD density of 4% and DTX loading of 10 wt%. Interestingly, cRGD-MDTX enabled an extraordinary tumor-liver ratio of 2.8/1 with a DTX uptake of 8.3 %ID/g in αvß3 over-expressing PC3 prostate tumor. The therapeutic studies demonstrated striking antitumor effects of cRGD-MDTX toward PC3 prostate tumor, prostate cancer patient-derived xenografts (PDX), orthotopic A549-Luc lung cancer and orthotopic SKOV3-Luc ovarian tumor models, in which tumor growth was effectually inhibited and 6-8 times better improvement of median survival time over free DTX was observed. This small disulfide-crosslinked micellar drug capable of relegating liver deposition opens a new avenue to nanomedicines for targeted therapy.


Asunto(s)
Antineoplásicos , Neoplasias Hepáticas , Neoplasias de la Próstata , Masculino , Humanos , Docetaxel/uso terapéutico , Micelas , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Disulfuros , Oligopéptidos , Línea Celular Tumoral , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
8.
Adv Mater ; 35(23): e2210691, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36913720

RESUMEN

siRNA-mediated management of myocardial ischemia reperfusion (IR) injury is greatly hampered by the inefficient myocardial enrichment and cardiomyocyte transfection. Herein, nanocomplexes (NCs) reversibly camouflaged with a platelet-macrophage hybrid membrane (HM) are developed to efficiently deliver Sav1 siRNA (siSav1) into cardiomyocytes, suppressing the Hippo pathway and inducing cardiomyocyte regeneration. The biomimetic BSPC@HM NCs consist of a cationic nanocore assembled from a membrane-penetrating helical polypeptide (P-Ben) and siSav1, a charge-reversal intermediate layer of poly(l-lysine)-cis-aconitic acid (PC), and an outer shell of HM. Due to HM-mediated inflammation homing and microthrombus targeting, intravenously injected BSPC@HM NCs can efficiently accumulate in the IR-injured myocardium, where the acidic inflammatory microenvironment triggers charge reversal of PC to shed off both HM and PC layers and allow the penetration of the exposed P-Ben/siSav1 NCs into cardiomyocytes. In rats and pigs, BSPC@HM NCs remarkably downregulates Sav1 in IR-injured myocardium, promotes myocardium regeneration, suppresses myocardial apoptosis, and recovers cardiac functions. This study reports a bioinspired strategy to overcome the multiple systemic barriers against myocardial siRNA delivery, and holds profound potential for gene therapy against cardiac injuries.


Asunto(s)
Daño por Reperfusión Miocárdica , Ratas , Porcinos , Animales , Daño por Reperfusión Miocárdica/terapia , Daño por Reperfusión Miocárdica/metabolismo , ARN Interferente Pequeño/metabolismo , Biomimética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Apoptosis
9.
Bioact Mater ; 25: 61-72, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36733927

RESUMEN

Triple-negative breast cancer (TNBC) due to lack of clear target and notorious "cold" tumor microenvironment (TME) is one of the most intractable and lethal malignancies. Tuning "cold" TME into "hot" becomes an emerging therapeutic strategy to TNBC. Herewith, we report that integrin-targeting micellar gemcitabine and paclitaxel (ATN-mG/P, ATN sequence: Ac-PhScNK-NH2) cooperating with polymersomal CpG (NanoCpG) effectively "heated up" and treated TNBC. ATN-mG/P exhibited greatly boosted apoptotic activity in 4T1 cells, induced potent immunogenic cell death (ICD), and efficiently stimulated maturation of bone marrow-derived dendritic cells (BMDCs). Remarkably, in a postoperative TNBC model, ATN-mG/P combining with NanoCpG promoted strong anti-cancer immune responses, showing a greatly augmented proportion of mature DCs and CD8+ T cells while reduced immune-suppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg), which led to complete inhibition of lung metastasis and 60% mice tumor-free. The co-delivery of gemcitabine and paclitaxel at desired ratio in combination with NanoCpG provides a unique platform for potent chemoimmunotherapy of "cold" tumors like TNBC.

10.
Biomater Sci ; 11(6): 2211-2220, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36748266

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease that gravely jeopardizes the quality of life of numerous people. Methotrexate (MTX) is a disease-modifying anti-rheumatic drug commonly used in clinics; however, it suffers from slow onset, moderate efficacy, and adverse reactions such as renal dysfunction, myelosuppression, and bone erosion after long-term treatment. Here, we explored macrophage targeted delivery of MTX using mannose-installed chimaeric polymersomes (Man-PMTX) as an advanced treatment for RA. Man-PMTX exhibited high (∼18 wt%) and robust loading of MTX, uniform size of 51-55 nm, minimal hemolytic activity, and glutathione-actuated drug release property. Man-PMTX showed better uptake by activated macrophages than PMTX, and more repolarization of bone marrow-derived macrophages (BMDMs) to anti-inflammatory M2 type macrophages and less secretion of TNF-α and IL-1ß compared with free MTX and PMTX. In vivo studies revealed that Man-PMTX showed significantly higher accumulation in inflammatory joints than in healthy joints and effectively treated RA by relieving inflammation, repolarizing macrophages from M1 type to M2 type, and mitigating proinflammatory cytokines. Accordingly, Man-PMTX effectively protected the synovium and bone from damage. Mannose-mediated nanodelivery of methotrexate to macrophages appears to be an attractive strategy to augment rheumatoid arthritis therapy.


Asunto(s)
Artritis Reumatoide , Metotrexato , Humanos , Metotrexato/farmacología , Manosa/farmacología , Calidad de Vida , Artritis Reumatoide/tratamiento farmacológico , Macrófagos
11.
Adv Drug Deliv Rev ; 192: 114624, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36435229

RESUMEN

The development of carrier systems that are able to transport and release therapeutics to target cells is an emergent strategy to treat cancer; however, they following endocytosis are usually trapped in the endo/lysosomal compartments. The efficacy of drug conjugates and nanotherapeutics relies critically on their intracellular drug release ability, for which advanced systems responding to the unique lysosomal environment such as acidic pH and abundant enzymes (e.g. cathepsin B, sulfatase and ß-glucuronidase) or equipped with photochemical internalization property have been energetically pursued. In this review, we highlight the recent designs of smart systems that promote efficient lysosomal release and/or escape of anticancer agents including chemotherapeutics (e.g. doxorubicin, platinum, chloroquine and hydrochloroquine) and biotherapeutics (e.g. proteins, siRNA, miRNA, mRNA and pDNA) to cancer cells or immunotherapeutic agents (e.g. antigens, mRNA and immunoadjuvants) to antigen-presenting cells (APCs), thereby boosting cancer therapy and immunotherapy. Lysosomal-mediated drug release presents an appealing approach to develop innovative cancer therapeutics and immunotherapeutics.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Liberación de Fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inmunoterapia , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Lisosomas/metabolismo , Concentración de Iones de Hidrógeno
12.
Bioact Mater ; 21: 499-510, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36185744

RESUMEN

Acute myeloid leukemia (AML) remains a most lethal hematological malignancy, partly because of its slow development of targeted therapies compared with other cancers. PLK1 inhibitor, volasertib (Vol), is among the few molecular targeted drugs granted breakthrough therapy status for AML; however, its fast clearance and dose-limiting toxicity greatly restrain its clinical benefits. Here, we report that transferrin-guided polymersomes (TPs) markedly augment the targetability, potency and safety of Vol to AML. Vol-loaded TPs (TPVol) with 4% transferrin exhibited best cellular uptake, effective down-regulation of p-PLK1, p-PTEN and p-AKT and superior apoptotic activity to free Vol in MV-4-11 leukemic cells. Intravenous injection of TPVol gave 6-fold higher AUC than free Vol and notable accumulation in AML-residing bone marrow. The efficacy studies in orthotopic MV-4-11 leukemic model demonstrated that TPVol significantly reduced leukemic cell proportions in periphery blood, bone marrow, liver and spleen, effectively enhanced mouse survival rate, and impeded bone loss. This transferrin-guided nano-delivery of molecular targeted drugs appears to be an interesting strategy towards the development of novel treatments for AML.

13.
iScience ; 25(12): 105511, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36437877

RESUMEN

Metastatic cancers and recurrent cancers are diverse, different from primary cancers, and organ-dependent. However, how strong are across-cancer immune responses among different types of cancers remain unclear. Herein, vaccines-encapsulated-whole-components-of-tumor-tissue (VEWCOTT) were applied to demonstrate the across-cancer immune responses, thanks to inducing pan-clones T-cell immune responses. Either lung-cancer-tissue- or melanoma-tissue-based VEWCOTT simultaneously prevented melanoma, lung cancer, hepatoma, and metastatic cancer, which showed that strong across-cancer immune responses were induced. Both nanovaccines and microvaccines showed potent across-cancer prevention efficacy. VEWCOTT induced tumor-specific T cells in peripheral immune organs and major organs, and adjusted the immune-microenvironment of cancer-colonized organs. In addition, the allograft of T cells from VEWCOTT immunized mice to allogeneic naive mice efficiently prevent various cancers. Many neoantigens are shared by melanoma cells and lung cancer cells. Across-cancer immune responses exist among different types of cancers, and thus VEWCOTT has the advantage of simultaneously preventing cancer metastasis and cancers in different organs.

15.
J Control Release ; 350: 460-470, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36041590

RESUMEN

Osteosarcoma (OS) is a rare but frequently lethal bone malignancy in children and adolescents. The adjuvant chemotherapy with doxorubicin (Dox) and cisplatin remains a mainstream clinical practice though it affords only limited clinical benefits due to low tumor deposition, dose-limiting toxicity and high rate of relapse/metastasis. Here, taking advantage of high IL-11Rα expression in the OS patients, we installed IL-11Rα specific peptide (sequence: cyclic CGRRAGGSC) onto redox-responsive polymersomes encapsulating Dox (IL11-PDox) to boost the specificity and anti-OS efficacy of chemotherapy. Of note, IL-11Rα peptide at a density of 20% greatly augmented the internalization, apoptotic activity, and migration inhibition of Dox in IL-11Rα-overexpressing 143B OS cells. The active targeting effect of IL11-PDox was supported in orthotopic and relapsed 143B OS models, as shown by striking repression of tumor growth and lung metastasis, and substantial survival benefits over free Dox control. We further verified that IL11-PDox could effectively inhibit patient-derived OS xenografts. IL-11Rα-targeted nanodelivery of chemotherapeutics provides a potential therapeutic strategy for advanced osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adolescente , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Niño , Cisplatino/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Humanos , Interleucina-11/uso terapéutico , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Péptidos/uso terapéutico
16.
Int J Pharm ; 625: 122126, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35995316

RESUMEN

The treatment of epithelial ovarian cancer (EOC) has made slow progress due to absence of effective adjuvant chemotherapy that is capable of preventing tumor relapse and metastasis. Molecular targeted drugs such as PARP and PLK1 inhibitors appear to be promising new treatments for EOC. The low EOC cell uptake, poor selectivity and pronounced toxicity, however, greatly compromise their clinical efficacy. Herein, we report that HER-2-mediated nano-delivery of clinical PLK1-targeted drug, volasertib (Vol), while causing little toxicity potently suppresses orthotopic EOC and metastasis. Anti-HER-2 antibody, trastuzumab (Tra), was conjugated onto Vol-loaded polymersomes via click chemistry yielding Tra-PVol with a size of 33 nm and optimally about 5 Tra per polymersome. Tra-PVol exhibited clearly stronger uptake and anti-tumor activity (IC50 = 59 nM) in HER-2 overexpressing SKOV-3 cells than free Vol and non-targeted PVol controls. Both biodistribution and therapeutic studies in orthotopic SKOV-3-Luc tumor-bearing mice displayed that Tra-PVol induced significantly better tumor deposition and retardation than PVol and that intraperitoneal administration outperformed intravenous administration. More interestingly, Tra-PVol was shown to effectively suppress the intraperitoneal metastasis and to markedly prolong the survival time of SKOV-3-Luc tumor-bearing mice. This HER-2 directed molecular therapy emerges as a potential treatment strategy toward EOC.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias Ováricas , Animales , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Preparaciones Farmacéuticas , Distribución Tisular , Trastuzumab
17.
J Control Release ; 347: 68-77, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35513207

RESUMEN

The response of malignant glioma to immunotherapy remains gloomy due to its discrete immunological environment and poor brain penetration of immunotherapeutic agents. Here, we disclose that ApoE peptide-mediated systemic nanodelivery of granzyme B (GrB) and CpG ODN co-stimulates enhanced immunotherapy of murine malignant LCPN glioma model. ApoE peptide-functionalized polymersomes encapsulating GrB (ApoE-PS-GrB) could effectively penetrate the blood-brain barrier-mimicking endothelial cell monolayer in vitro and further be taken up by LCPN cells, inducing strong immunogenic cell death (ICD). The co-administration of ApoE-PS-GrB and ApoE-PS-CpG in orthotopic LCPN glioma-bearing mice co-stimulated cytokine production, maturation of dendritic cells (DCs), infiltration of cytotoxic T lymphocytes (CTLs) while reduction of regulatory T lymphocytes (Treg) and M2 phenotype macrophages in the tumor microenvironment, leading to greatly delayed tumor progression and significantly prolonged survival time compared with all controls. The ApoE-mediated systemic nanodelivery of GrB and CpG ODN opens a new pathway for potent immunotherapy of malignant glioma.


Asunto(s)
Glioma , Animales , Apolipoproteínas E/uso terapéutico , Células Dendríticas , Glioma/tratamiento farmacológico , Granzimas , Inmunoterapia , Ratones , Oligodesoxirribonucleótidos , Linfocitos T Citotóxicos , Microambiente Tumoral
18.
Bioact Mater ; 16: 1-11, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35386324

RESUMEN

Cyclic dinucleotides (CDNs) as stimulator of interferon genes (STING) agonists capable of inducing strong antitumor innate immune response are highly promising for tumor immunotherapy. The efficacy of these CDNs is, however, reduced greatly by their fast clearance, poor cell uptake and inefficient cytosolic transportation. Here, we report that reduction-responsive biodegradable chimaeric polymersomes (CPs) markedly enhance tumor retention and cytosolic delivery of a synthetic CDN, ADU-S100, and bolster STING pathway activation in the tumor microenvironment and tumor draining lymph nodes, giving significantly better tumor repression and survival of B16F10 melanoma-bearing mice compared with free CDN control. The superiority of CPs-mediated CDN delivery is further verified in combination therapy with low-dose fractionated radiation, which brings about clearly stronger and longer-term immunotherapeutic effects and protection against tumor re-challenge. The development of nano-STING agonists that are able to overcome the delivery barriers of CDNs represents an effective strategy to potentiate cancer immunotherapy.

19.
Acta Biomater ; 145: 200-209, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35430336

RESUMEN

Gemcitabine (GEM) is among the most used chemotherapies for advanced malignancies including non-small cell lung cancer. The clinical efficacy of GEM is, however, downplayed by its poor bioavailability, short half-life, drug resistance, and dose-limiting toxicities (e.g. myelosuppression). In spite of many approaches exploited to improve the efficacy and safety of GEM, limited success was achieved. The short A6 peptide (sequence: Ac-KPSSPPEE-NH2) is clinically validated for specific binding to CD44 on metastatic tumors. Here, we designed a robust and CD44-specific GEM nanotherapeutics by encapsulating hydrophobic phosphorylated gemcitabine prodrug (HPG) into the core of A6 peptide-functionalized disulfide-crosslinked micelles (A6-mHPG), which exhibited reduction-triggered HPG release and specific targetability to CD44 overexpressing tumor cells. Interestingly, A6 greatly enhanced the internalization and inhibitory activity of micellar HPG (mHPG) in CD44 positive A549 cells, and increased its accumulation in A549 cancerous lung, leading to potent repression of orthotopic tumor growth, depleted toxicity, and marked survival benefits compared to free HPG and mHPG (median survival time: 59 days versus 30 and 45 days, respectively). The targeted delivery of gemcitabine prodrug with disulfide-crosslinked biodegradable micelles appears to be a highly appealing strategy to boost gemcitabine therapy for advance tumors. STATEMENT OF SIGNIFICANCE: Gemcitabine (GEM) though widely used in clinics for treating advanced tumors is associated with poor bioavailability, short half-life and dose-limiting toxicities. Development of clinically translatable GEM formulations to improve its anti-tumor efficacy and safety is of great interest. Here, we report on CD44-targeting GEM nanotherapeutics obtained by encapsulating hydrophobic phosphorylated GEM prodrug (HPG), a single isomer of NUC-1031, into A6 peptide-functionalized disulfide-crosslinked micelles (A6-mHPG). A6-mHPG demonstrates stability against degradation, enhanced internalization and inhibition toward CD44+ cells, and increased accumulation in A549 lung tumor xenografts, leading to potent repression of orthotopic tumor growth, depleted toxicity and marked survival benefits. The targeted delivery of GEM prodrug using A6-mHPG is a highly appealing strategy to GEM cancer therapy.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Profármacos , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Disulfuros , Humanos , Receptores de Hialuranos , Pulmón , Neoplasias Pulmonares/tratamiento farmacológico , Metoxihidroxifenilglicol , Micelas , Profármacos/química , Profármacos/farmacología , Gemcitabina
20.
Adv Sci (Weinh) ; 9(13): e2103689, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35253404

RESUMEN

Immunotherapy with toll like receptor 9 (TLR9) agonist CpG ODN offers an emergent strategy to treat life-threatening malignant glioma. CpG is typically applied invasively by intracranial and intrathecal administration which induces not only poor compliance and lessened potency but also possibly strong adverse effects and immunotoxicity. Here, it is reported that immunotherapy of murine LCPN glioma is greatly boosted by polymersome-steered intravenous and intranasal brain delivery of CpG. CpG is efficiently loaded in apolipoprotein E peptide-directed polymersomes to give blood-brain barrier permeable and glioma and cervical lymph node-homing CpG nano-immunoadjuvant (t-NanoCpG) which strongly stimulates the maturation of dendritic cells, antigen cross-presentation, and production of proinflammatory cytokines in vivo. Intriguingly, both intravenous and intranasal administration of t-NanoCpG brings about significant survival benefits in murine LCPN glioma-bearing mice while free CpG and nontargeted CpG nano-immunoadjuvant (NanoCpG) afford modest therapeutic effects. Moreover, combination of t-NanoCpG with radiotherapy further boosts the immunotherapeutic effects leading to more improved survival rate of mice. This intelligent brain-permeable nano-immunoadjuvant provides a new, minimally invasive and highly potent strategy for immunotherapy of glioma.


Asunto(s)
Glioma , Receptor Toll-Like 9 , Adyuvantes Inmunológicos/uso terapéutico , Animales , Glioma/tratamiento farmacológico , Factores Inmunológicos/uso terapéutico , Inmunoterapia , Ratones , Receptor Toll-Like 9/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...