Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Virol ; 168(1): 15, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36593368

RESUMEN

Phaeobotryon rhois is an important pathogenic fungus that causes dieback and canker disease of woody hosts. A novel mycovirus, tentatively named "Phaeobotryon rhois victorivirus 1" (PrVV1), was identified in P. rhois strain SX8-4. The PrVV1 has a double-stranded RNA (dsRNA) genome that is 5,224 base pairs long and contains two open reading frames (ORF1 and ORF2), which overlap at a AUGA sequence. ORF1 encodes a polypeptide of 786 amino acids (aa) that contains the conserved coat protein (CP) domain of victoriviruses, while ORF2, encodes a large polypeptide of 826 aa that contains the conserved RNA-dependent RNA polymerase (RdRp) domain of victoriviruses. Our analysis of genomic structure, homology, and phylogeny indicated that PrVV1 is a novel member of the genus Victorivirus in the family Totiviridae. This is the first report of the complete genome sequence of a victorivirus that infects P. rhois.


Asunto(s)
Ascomicetos , Virus Fúngicos , Virus ARN , Totiviridae , Proteínas Virales/genética , Proteínas Virales/química , Ascomicetos/genética , Genómica , Genoma Viral , Filogenia , Sistemas de Lectura Abierta , ARN Bicatenario , ARN Viral/genética , ARN Viral/química , Virus Fúngicos/genética , Virus ARN/genética
2.
J Agric Food Chem ; 70(33): 10305-10315, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35950372

RESUMEN

Wheat root diseases can seriously reduce yields and quality of wheat. 1,2,4-Triazole benzoyl arylamine derivatives previously showed good activities against some wheat root fungal pathogens. To further systematically disclose the structure-activity relationship, a series of benzoyl arylamines were designed and prepared. Their structures were characterized and fungicidal activities against Gaeumannomyces graminis var. tritici and Fusarium graminearum were evaluated. The results indicated that the structure of the N-heterocyclic group and the substituted group and their position on the benzamide scaffold had an important influence on the activities, as predicted. Finally, compound 18f was found to show excellent activities against G. graminis var. tritici, F. graminearum, Fusarium culmorum, Fusarium pseudograminearum, and Fusarium moniliforme with half-maximum effective concentrations of 0.002, 0.093, 0.011, 0.881, and 0.287 µg/mL, respectively. These results proposed that compound 18f deserved serious consideration as a novel fungicide candidate for the control of wheat root diseases.


Asunto(s)
Ascomicetos , Fungicidas Industriales , Fusarium , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología
3.
Front Biosci (Landmark Ed) ; 27(5): 154, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35638421

RESUMEN

BACKGROUND: In this study, the entire mitochondrial genome (mitogenome) of Aleuroclava psidii (Singh, 1931) (Hemiptera: Aleyrodidae) was sequenced. The species A. psidii is currently classified in the subfamily Aleyrodinae. This mitogenome is the first representative from the genus Aleuroclava. METHODS: Next-generation sequencing was used to obtain the molecular data. We conducted phylogenetic analyses with 18 existing mitogenomes of whiteflies and three outgroups of psyllids, under the Maximum likelihood and Bayesian inference criteria. RESULTS: The arrangement of genes differed between the mitogenome of A. psidii and the putative ancestral insect mitogenome, and also differed from the mitogenomes of other whiteflies. Mitochondrial gene rearrangements involved the transpositions of trnQ, trnY, and the protein-coding gene nad1. Most hemipteran mitogenomes have the same mitochondrial gene order as that inferred to be ancestral for insects. However, there are an increased number of gene rearrangements in the mitogenomes of whiteflies. Phylogenetic reconstructions supported Aleurodicinae and Aleyrodinae as being monophyletic. CONCLUSIONS: Comparison of the gene order of mitogenomes revealed a clade-specific evolutionary trend in whiteflies. This study demonstrates the potential of using structural rearrangements to resolve major phylogenetic relationships within Aleyrodidae.


Asunto(s)
Genoma Mitocondrial , Hemípteros , Animales , Teorema de Bayes , Reordenamiento Génico , Genes Mitocondriales , Genoma Mitocondrial/genética , Hemípteros/genética , Filogenia
4.
Plant Dis ; 2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35285266

RESUMEN

Aphelenchoides besseyi is one of the important plant-parasitic nematodes on rice, reducing approximate 10-20% of the rice yield annually (Jones et al. 2013). Foxtail millet (Setaria italica) has been a major cereal crop in Northern China, especially in the semi-arid areas of this region, for thousands of years. In August of 2019 and 2020, a survey of nematodes on autumn grain crops was performed each year. One foxtail millet field (N34° 58' 027″ and E113° 39' 059″) in Yuanyang County of Henan Province caught our attention. Some upper leaves showed chlorosis without or with necrotic tips, and flag leaves presented crinkling and distortion, stalks were colored, earheads were vertical, glumes were brown or light black and open, and grains became thin. A total of ten samples were collected, and the nematodes were isolated from the spike pieces by shallow plate method and counted under a stereomicroscope. The average number of nematodes per earhead of foxtail millet counted up to 1738.75 ± 107.72. Morphologically, females were slender with a short stylet, an oval metacorpus with a distinct valve, a labial region slightly wider than the first body annulus and a conoid tail with a terminus bearing a star-shaped mucro with four pointed processes. The females were characterized as follows (mean ± SD; n=20): body length (L) = 668.92 ± 12.73 µm (647.38 to 689.70 µm); maximum body width (W) = 14.35 ± 1.11 µm (12.12 to 16.88 µm); L/W = 46.83 ± 2.94 (40.44 to 50.03); tail length = 38.93 ± 3.48 µm (33.41 to 45.92 µm); L/tail length = 17.31 ± 1.44 (14.47 to 19.62); and stylet length (ST) = 11.57 ± 0.57 µm (10.77 to 12.34 µm). The males had three pairs of ventrosubmedian papillae with the first one adanal, spicula curved with a slight basal process, terminus bearing four mucrones arranged variably, and the whole worm was in 'J' shape. The males could be described as follows (mean ± SD, n = 20): L = 606.66 ± 10.70 µm (586.49 to 626.37 µm); W = 13.95 ± 0.60 µm (12.71 to 14.94 µm); L/W = 43.55 ± 1.69 (40.73 to 46.43); tail length = 35.54 ± 1.93 µm (31.41 to 38.18 µm); L/tail length = 17.07 ± 0.79 (16.05 to 18.67); ST = 11.53 ± 0.56 µm (1061 to 12.76 µm). All the key morphometrics were consistent with those of A. besseyi reported from Brazil (Favoreto et al. 2018) and China (Lin et al. 2004; Ou et al. 2014). The amplifications of rDNA internal transcribed spacer (ITS) fragments generated a PCR fragment of 830 bp from a single nematode, using the primers set TW81 (5'-GTTTCCGTAGGTGAACCTGC-3') and AB28 (5'-ATATGCTTAAGTTCAGCGGGT-3') (Joyce et al. 1994). Five independent PCR experiments were conducted, and all the PCR products were purified and sequenced. Nucleotide sequence of ITS-rDNA was deposited in GenBank with Accession Number OK090549.1. The obtained ITS region sequence was more than 99% identical to those of A. besseyi reported from China (MW216945.1) and India (JF826518.1, JF826519.1 and JF826517.1). These ITS sequence results further supported that the isolated nematodes were A. besseyi. Subsequently, the species-specific primers of A. besseyi (BSF, 5'-TCGATGAAGAACGCAGTGAATT-3' and BSR, 5'-AGATCAAAAGCCAATCGAATCAT-3') were used for confirmation by PCR (Cui et al. 2010). An expected PCR fragment of 312 bp was obtained, which was consistent with those of A. besseyi reported previously. The pathogenicity of identified A. besseyi was confirmed by infection of foxtail millet (Setaria italica cv. 'Yugu33'). Foxtail millet budding seeds were sown in the pots contained 150 mL of sterile soil mixture. In two weeks, 10 seedlings were inoculated with 100 A. besseyi each, and 4 plants were non-inoculated as the control. The foxtail millet seedlings were grown in a plant-growth chamber at 25/30°C under 12 h dark/12 h light. On the average, 73.3 and 138.2 of A. besseyi were isolated from each plant at 15 and 40 days post inoculation, respectively. Both the morphological and molecular characteristics were identical with those nematodes obtained from the original samples. All the upper leaves of the inoculated plants showed chlorosis and necrosis, symptoms that were similar to those observed in the field, and neither symptom developed on the non-inoculated control plants, nor were nematodes re-isolated from the control plants. To the best of our knowledge, this is the first record of A. besseyi on foxtail millet in Henan Province of North China. Henan is one of the most important grain-producing areas in China, and A. besseyi is an important domestic quarantine nematode, which may become a severe threat to cereal production in Henan Province. Our findings will be very beneficial for A. besseyi management and further research on foxtail millet in Henan Province of North China.

5.
Plant Dis ; 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33507099

RESUMEN

Three of the cereal cyst nematodes, Heterodera avenae, H. filipjevi and H. latipons are considered to be the most economically important cyst nematodes that affect cultivated cereals around the world. H. filipjevi was first detected in China from Xuchang, Henan Province in 2010 (Peng et al. 2010) and now has been recorded in the Central China of Henan, Shandong and Anhui provinces and the Northwest China of Xinjiang Uygur Autonomous Region (Cui et al. 2020). In June 2019, 42 samples consisting of roots and soil were collected from winter wheat fields in Hebei Province of North China. Cysts were detected in 37 soil samples with a mean of 6.4 ± 1.67 cysts per 100 ml of soil. Cysts and second-stage juveniles (J2s) were extracted from root and soil following Cobb's sieving gravity method. Morphological and molecular studies of J2s and cysts confirmed its identity with H. filipjevi in 5 samples from Handan (N36°10'052" and E114°35'056"; N36°37'054" and E114°22'052"), Xingtai (N36°53'060" and E114°30'011") and Shijiazhuang (N 37°26'048" and E 116°05'039") in Hebei Province, China. Morphologically, the cysts are lemon-shaped, light or dark brown in color. The vulval cone is bifenestrate with horseshoe-shaped semifenestrae, strongly globular bullae, and well-developed underbridge. Measurements (mean +_ sd (range)) of cysts (n=10), body length not including neck is 743.0 ± 36.1 µm (665 - 780 µm), body width is 559.0 ± 50.0 µm (455 - 639 µm), length / width ratio is 1.33 ± 0.07 (1.20 - 1.46); neck length is 99.3 ± 8.8 µm (85 - 122 µm); fenestrae length is 56.8 ± 5.0 µm (49 - 65 µm) and width is 25.5 ± 1.8 µm (21.1 - 27.8 µm); underbridge length is 84.0 ± 8.1 µm (62 - 93 µm); and vulval slit length is 8.6 ± 0.5 µm (7.2 - 9.1 µm). Measurements of J2s (n = 12), body length is 541 ± 11.4 µm (490 - 578 µm); stylet length is 22.3 ± 0.5 µm (22.0 - 25.0 µm) with anchor-shaped basal knobs; tail length is 57.7 ± 3.7 µm (52.7 - 65.2 µm), and hyaline tail terminal length is 36.5 ± 2.8 µm (32 - 39.8 µm). The tail had a sharp terminus. Morphology of the cysts and J2s were consistent with the record of H. filipjevi (Peng et al. 2010; Subbotin et al. 2010). The amplifications of rDNA-internal transcribed spacer (ITS) fragments were generated with a PCR fragment of 1054 bp from single cysts of each population, using primers TW81 and AB28 (Joyce et al. 1994). The PCR tests for each sample were repeated five times. The PCR product was purified and sequenced. All nucleotide sequences of ITS-rDNA were submitted to GenBank under accession numbers MW282843-6. Sequences from the ITS region were more than 99.5% identical to those of H. filipjevi from Egypt (KF225725), Turkey (KR704308, KR704293 and MN848333) and China (KT314234, MT254744 and KY448473). These results from ITS supported its identity as H. filipjevi. The results were also confirmed by species specific sequence characterized amplified region primers of H. filipjevi (Peng et al. 2013). Pathogenicity of the H. filipjevi was confirmed by infection of winter wheat (Triticum aestivum L cv. 'Aikang58') and examination of the nematode development and reproduction. Wheat seeds were germinated in petri dishes and then transplanted into five polyvinyl chloride tubs (3 cm in diameter, 25 cm in length) that contained 150 cm3 of a sterile soil mixture (loamy soil: sand = 1:1), each with 5 cysts (mean of 252.0 eggs/cyst). Plants were grown in an artificial climate box for one week at 14/18°C, two weeks at 16/20°C, five weeks at 18/25°C and two weeks at 22/30°C, under 8 h of darkness/16 h light and normal culturing practices (Cui et al. 2015). The parasitic J2s, third and fourth-stage juveniles, and adult females were observed in roots stained with acid fuchsin at 10, 20, 30, and 50 days after inoculation (DAI), and an average of 32.0 cysts per tubes were extracted 70 DAI. The new cyst' morphological and molecular characteristics were identical to the H. filipjevi cysts from the original soil samples. Three other tubes without cysts were set as control and there were no newly formed cysts. Heterodera avenae and H. filipjevi had been detected in a total of 16 wheat-producing provinces in China, which resulted in losses of 1.9 billion CNY year-1 (Cui et al. 2015). To our knowledge, this is the first report of H. filipjevi in Hebei Province of North China. Cereal cyst nematodes are easily transferred to non-infested areas by many avenues, resulting in increased species and pathotype complexity (Cui et al. 2020). Once H. filipjevi continues to spread in main wheat producing area of China, it could become be a new threat to cereals production. It is time to take effective control methods to prevent H. filipjevi further dispersal, especially through the farming machinery transmission. Hebei Province is one of the most important major grain-producing areas, our findings will be very beneficial for H. filipjevi management and further research on winter wheat in Hebei Province, North China.

6.
Plant Dis ; 104(12): 3230-3238, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33079015

RESUMEN

Heterodera avenae and H. filipjevi are cereal cyst nematodes (CCNs) that infect cereals in 16 provinces of China. CCN populations from Xuchang, Tangyin, Qihe, and Juye were tested using 23 barley, oat, and wheat entries of the International Test Assortment for Defining Cereal Cyst Nematode Pathotypes. H. avenae populations from Tangyin, Qihe, and Juye were classified as pathotype Ha91, and H. filipjevi from Xuchang was classified as a new pathotype similar to pathotype West. Among 42 other winter wheat cultivars, 29 and 30 were differentially susceptible, 13 and 12 were differentially resistant to H. avenae and H. filipjevi, respectively. Three entries were resistant to both species, and three other entries were resistant to H. avenae and moderately resistant to H. filipjevi. Coating wheat seed with abamectin + isopycnic imidacloprid or methylene (bis) thiocyanate + thiamethoxam reduced the number of H. avenae and H. filipjevi cysts by 46 to 56%, increased wheat yield by 9 to 27%, and improved net income by 660 to 2,640 Chinese Yuan ha-1, respectively. Resistant wheat cultivars are scarce in China, and seed coating is considered the most suitable method for controlling CCNs in the North China Plain, where crop rotation cannot be practiced.


Asunto(s)
Tylenchoidea , Animales , China , Grano Comestible , Hordeum , Triticum
7.
Plant Dis ; 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32910732

RESUMEN

From June 2018 to November 2019, a survey for cyst-forming nematodes was conducted in rice fields in Henan Province of central China. Cysts were recovered from two rice fields (N32° 14' 048″8 and E115° 4' 008″) at Huangchuan County, leading to more intensive sampling. A further 25 soil samples were then collected with a valve bag from each of these two locations. Cysts and second-stage juveniles (J2) were recovered from roots and soil following Cobb's gravity sieving method. Live cysts were detected in all soil samples with a mean of 6.7±1.5 cysts per 100 ml of soil. Morphologically, the cysts were spherical to lemon-shaped, light to dark brown in color with subcrystalline layer. The vulval cone was well developed, cone terminus with a few large, peripheral, dark brown bullae lacking finger-like projections, and the ambifenestrae were almost rounded with two semifenestrae; width and length of the semifenestrae were similar. The vulval bridge was narrow, with a medium sized underbridge. Cyst measurements (n = 8) determined a mean body length of 431.1 ± 47.23 (351.0 - 516.0) µm, body width 304.3 ± 47.40 (240.0 - 381.0) µm; body length to width ratio 1.42 ± 0.10 (1.2 to 1.6); fenestrae length 39.4 ± 7.06 (26.0 - 47.0) µm; fenestrae width 36.5 ± 5.96 (25.0 - 43.0) µm; vulva slit length 37.1 ± 3.62 (30.0 - 42.0) µm; and the mean underbridge length 75.0 ± 3.39 (70.0 - 81.0) µm. Morphometric J2 measurements (n = 10) included a body length of 432.3 ± 53.26 (379.0 - 512.0) µm; stylet length 20.8 ± 1.87 (18.0 - 24) µm with rounded knobs; tail length 63.1 ± 7.92 (52.0 - 75.0) µm with a hyaline terminal tail length of 35.8 ± 6.14 (28.0 - 45.0) µm. The key morphometrics of this isolate were intermediate to those of the Japanese isolates (Nobbs et al. 1992.) and Chinese isolates (Ding et al. 2012), and other morphological character values were within the range of those reported for Heterodera elachista (Nobbs et al. 1992; Tanha Maafi et al. 2003). Amplification of DNA from single cysts (n = 7) was conducted using the protocol described by Ding et al. (2012). rDNA - ITS sequences were amplified with the universal primers TW81 and AB28 (Joyce et al. 1994). The PCR product was purified and sequenced. The ITS sequences were submitted to GenBank under accession numbers MT579616. Comparisons showed a sequence identity of more than 99.9% for H. elachista sequence MN720080 from Korea and 99.5% for H. elachista sequences JN864884 and JN202916 from China. Species identification was also confirmed using sequence characterized amplified region (SCAR) methods with H. elachista-specific primers He-F/He-R (Qi, 2012). An expected PCR fragment of approximately 434 bp was obtained, which was consistent with those previously reported for H. elachista. Pathogenicity was confirmed by infection and reproduction on rice (Oryza sativa cv. 'Nipponbare'). Seeds were sown into three tubes containing 150 ml of a sterile soil mixture (loamy soil: sand = 1:1), each with 5 cysts (mean of 185 eggs/cyst) and cultivated in an artificial climate box at 25/30°C, under a 12-h dark/12-h light cycle. Three other tubes without cysts were set as control. Two weeks after sowing, stunting and reduction of leaf length were observed and third- and fourth-stage juveniles were observed in roots stained with acid fuchsin. On average, 142 cysts per 150 ml soil were recovered at 5 weeks after sowing. The newly formed cysts corresponded morphologically and molecularly to the cysts from the original soil samples. The globally recognized and economically important rice-damaging cyst nematodes include H. oryzae, H. oryzicola, H. elachista, H. sacchari and H. graminophila (Zhuo et al. 2014). Ohshima (1974) first reported H. elachista, which was originally recorded as H. oryzae in Japan by Luc and Brizuela (1961). H. elachista was then detected from a rice field at Mazandaran Province in Iran (Tanha Maafi et al., 2003), and in upland rice fields in Hunan (Ding et al., 2012) and Guangxi, China (Zhuo et al. 2014). To the best of our knowledge, this is the first report of H. elachista as a pathogen on rice in Henan Province, in central China. According to our field observations, H. elachista was much more serious in direct-seeded rice field than in the transplanted rice fields. H. elachista was also reported attacking corn (Xiao et al., 2019). Henan is the most important corn-producing province in China, thus H. elachista is a potential threat to corn production in Henan. Our findings will be very beneficial for H. elachista management and further research on direct-seeded rice and corn in Henan Province, central China.

8.
Mitochondrial DNA B Resour ; 3(2): 678-680, 2018 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-33490529

RESUMEN

This study sequenced and analyzed the nearly complete mitochondrial genome of Anthocoris kerzhneri. This mitogenome is 16,018 bp long and consisted of 13 protein-coding genes, 20 tRNA genes and two rRNA genes. All protein-coding genes begin with the typical ATN codons and end with TAA or TAG codons. Phylogenetic analysis confirmed that the Reduviidae and Anthocoridae were polyphyletic groups. The Miridae and Tingidae had a sister group relationship.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...