Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(26): e2401724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575151

RESUMEN

Simultaneously achieving a high photoluminescence quantum yield (PLQY), ultrashort exciton lifetime, and suppressed concentration quenching in thermally activated delayed fluorescence (TADF) materials is desirable yet challenging. Here, a novel acceptor-donor-acceptor type TADF emitter, namely, 2BO-sQA, wherein two oxygen-bridged triarylboron (BO) acceptors are arranged with cofacial alignment and positioned nearly orthogonal to the rigid dispirofluorene-quinolinoacridine (sQA) donor is reported. This molecular design enables the compound to achieve highly efficient (PLQYs up to 99%) and short-lived (nanosecond-scale) blue TADF with effectively suppressed concentration quenching in films. Consequently, the doped organic light-emitting diodes (OLEDs) base on 2BO-sQA achieve exceptional electroluminescence performance across a broad range of doping concentrations, maintaining maximum external quantum efficiencies (EQEs) at over 30% for doping concentrations ranging from 10 to 70 wt%. Remarkably, the nondoped blue OLED achieves a record-high maximum EQE of 26.6% with a small efficiency roll-off of 14.0% at 1000 candelas per square meter. By using 2BO-sQA as the sensitizer for the multiresonance TADF emitter ν-DABNA, TADF-sensitized fluorescence OLEDs achieve high-efficiency deep-blue emission. These results demonstrate the feasibility of this molecular design in developing TADF emitters with high efficiency, ultrashort exciton lifetime, and minimal concentration quenching.

2.
J Phys Chem A ; 128(9): 1611-1619, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38382059

RESUMEN

Thermally activated delayed fluorescence (TADF) emitters based on the triptycene skeleton demonstrate exceptional performance, superior stability, and low efficiency roll-off. Understanding the interplay between the luminescent properties of triptycene-TADF molecules and their assembly environments, along with their excited-state characteristics, necessitates a comprehensive theoretical exploration. Herein, we predict the photophysical properties of triptycene-TADF molecules in a thin film environment using the quantum mechanics/molecular mechanics method and quantify their substantial dependency on the heavy atom effects and reorganization energies using the Marcus-Levich theory. Our calculated photophysical properties for two recently reported molecules closely align with experimental values. We design three novel triptycene-TADF molecules by incorporating chalcogen elements (O, S, and Se) to modify the acceptor units. These newly designed molecules exhibit reduced reorganization energies and enhanced reverse intersystem crossing (RISC) rates. The heavy atom effect amplifies spin-orbit coupling, thereby facilitating the RISC process, particularly at a remarkably high rate of ∼109 s-1.

3.
Phys Chem Chem Phys ; 26(7): 6420-6428, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38317611

RESUMEN

Recently, thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) features have been widely applied in developing organic light-emitting diodes with high luminescence efficiencies. The performance of TSCT-TADF molecules depends highly on their molecular structures. Therefore, theoretical investigation plays a significant role in designing novel highly efficient TSCT-TADF molecules. Herein, we theoretically investigate two recently reported TSCT-TADF molecules, 1'-(2,12-di-t-butyl[1,4]benzoxaborinino[2,3,4-kl]phenoxaborinin-7-yl)-10-phenyl-10H-spiro[acridine-9,9'-fluorene] (AC-BO) and 1-(2,12-di-t-butyl[1,4]benzoxaborinino[2,3,4-kl]phenoxaborinin-7-yl)-9',9'-dimethyl-9'H-spiro [fluorene-9,5'-quinolino[3,2,1-de]acridine](QAC-BO). The calculated photophysical properties (e.g. excited state energy levels and luminescence properties) for these two compounds are in good agreement with experimental data. Based on the systematic analysis of structure-performance relationships, we design three novel TSCT-TADF molecules with high molecular rigidity and evident TSCT features, i.e., DQAC-DBO, DQAC-SBO, and DQAC-NBO. They exhibit deep-blue light emissions and fast reverse intersystem crossing rates (KRISCs). Our calculations demonstrate that the nearly coplanar orientation of the donor and acceptor is critical to achieve remarkable KRISCs and fluorescence efficiencies in TSCT-TADF molecules.

4.
J Environ Manage ; 351: 119939, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38169267

RESUMEN

Secondary aluminum ash (SAD) disposal is challenging, particularly in developing countries, and presents severe eco-environmental risks. This paper presents the treatment techniques, mechanisms, and effects of SAD at the current technical-economic level based on aluminum ash's resource utilization and environmental properties. Five recovery techniques were summarized based on aluminum's recoverability in SAD. Four traditional utilization methods were outlined as per the utilization of alumina in SAD. Three new utilization methods of SAD were summarized based on the removability (or convertibility) of aluminum nitride in SAD. The R-U-R (recoverability, utilizability, and removability) theory of SAD was formed based on several studies that helped identify the fingerprint of SAD. Furthermore, the utilization strategies of SAD, which supported the recycling of aluminum ash, were proposed. To form a perfect fingerprint database and develop various relevant techniques, future research must focus on an extensive examination of the characteristics of aluminum ash. This research will be advantageous for addressing the resource and environmental challenges of aluminum ash.


Asunto(s)
Óxido de Aluminio , Aluminio , Reciclaje
5.
J Am Chem Soc ; 146(4): 2494-2502, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38129761

RESUMEN

Designing and synthesizing fullerene bisadducts with a higher-lying conduction band minimum is promising to further improve the device performance of tin-based perovskite solar cells (TPSCs). However, the commonly obtained fullerene bisadduct products are isomeric mixtures and require complicated separation. Moreover, the isomeric mixtures are prone to resulting in energy alignment disorders, interfacial charge loss, and limited device performance improvement. Herein, we synthesized single-isomer C60- and C70-based diethylmalonate functionalized bisadducts (C60BB and C70BB) by utilizing the steric-hindrance-assisted strategy and determined all molecular structures involved by single crystal diffraction. Meanwhile, we found that the different solvents used for processing the fullerene bisadducts can effectively regulate the molecular packing in their films. The dense and amorphous fullerene bisadduct films prepared by using anisole exhibited the highest electron mobility. Finally, C60BB- and C70BB-based TPSCs showed impressive efficiencies up to 14.51 and 14.28%, respectively. These devices also exhibited excellent long-term stability. This work highlights the importance of developing strategies to synthesize single-isomer fullerene bisadducts and regulate their molecular packing to improve TPSCs' performance.

6.
J Colloid Interface Sci ; 650(Pt A): 784-797, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37441971

RESUMEN

ZnIn2S4/ZnO heterostructures have been achieved by a simple in-situ growth solvothermal method. Under full spectrum irradiation, the optimal photocatalyst 2ZnIn2S4/ZnO exhibits H2 evolution rate of 13,638 (water/ethanol = 1:1) and 3036 (water) µmol·g-1h-1, which is respectively 4 and 5 times higher than that of pure ZnIn2S4. In situ illumination X-ray photoelectron spectroscopy (ISI-XPS) analysis and density functional theory (DFT) calculations show that the electrons of ZnIn2S4 are removed to ZnO through hybridization and form an internal electric field between ZnIn2S4 and ZnO. The optical properties of the catalyst and the effect of internal electric field (IEF) can increase photo-generated electrons (e-)-holes (h+) transport rate and enhance light collection, resulting in profitable photocatalytic properties. The photoelectrochemical and EPR results show that a stepped (S-scheme) heterojunction is formed in the ZnIn2S4/ZnO redox center, which greatly promotes separation of e--h+ pairs and efficient H2 evolution. This research offers an effective method for constructing an efficient S-Scheme photocatalytic system for H2 evolution.

7.
Adv Sci (Weinh) ; 10(23): e2300808, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37279379

RESUMEN

The development of orange-red/red thermally activated delayed fluorescence (TADF) materials with both high emission efficiencies and short lifetimes is highly desirable for electroluminescence (EL) applications, but remains a formidable challenge owing to the strict molecular design principles. Herein, two new orange-red/red TADF emitters, namely AC-PCNCF3 and TAC-PCNCF3, composed of pyridine-3,5-dicarbonitrile-derived electron-acceptor (PCNCF3) and acridine electron-donors (AC/TAC) are developed. These emitters in doped films exhibit excellent photophysical properties, including high photoluminescence quantum yields of up to 0.91, tiny singlet-triplet energy gaps of 0.01 eV, and ultrashort TADF lifetimes of less than 1 µs. The TADF-organic light-emitting diodes employing the AC-PCNCF3 as emitter achieve orange-red and red EL with high external quantum efficiencies of up to 25.0% and nearly 20% at doping concentrations of 5 and 40 wt%, respectively, both accompanied by well-suppressed efficiency roll-offs. This work provides an efficient molecular design strategy for developing high-performance red TADF materials.

8.
ACS Appl Mater Interfaces ; 15(25): 30543-30552, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37315213

RESUMEN

The development of highly efficient orange and red thermally activated delayed fluorescence (TADF) materials for constructing full-color and white organic light-emitting diodes (OLEDs) remains insufficient because of the formidable challenges in molecular design, such as the severe radiationless decay and the intrinsic trade-off between the efficiencies of radiative decay and reverse intersystem crossing (RISC). Herein, we design two high-efficiency orange and orange-red TADF molecules by constructing intermolecular noncovalent interactions. This strategy could not only ensure high emission efficiency via suppression of the nonradiative relaxation and enhancement of the radiative transition but also create intermediate triplet excited states to ensure the RISC process. Both emitters exhibit typical TADF characteristics, with a fast radiative rate and a low nonradiative rate. Photoluminescence quantum yields (PLQYs) of the orange (TPA-PT) and orange-red (DMAC-PT) materials reach up to 94 and 87%, respectively. Benefiting from the excellent photophysical properties and stability, OLEDs based on these TADF emitters realize orange to orange-red electroluminescence with high external quantum efficiencies reaching 26.2%. The current study demonstrates that the introduction of intermolecular noncovalent interactions is a feasible strategy for designing highly efficient orange to red TADF materials.

9.
Molecules ; 28(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37375387

RESUMEN

The development of efficient deep-blue emitters with thermally activated delayed fluorescence (TADF) properties is a highly significant but challenging task in the field of organic light-emitting diode (OLED) applications. Herein, we report the design and synthesis of two new 4,10-dimethyl-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine (TB)-derived TADF emitters, TB-BP-DMAC and TB-DMAC, which feature distinct benzophenone (BP)-derived acceptors but share the same dimethylacridin (DMAC) donors. Our comparative study reveals that the amide acceptor in TB-DMAC exhibits a significantly weaker electron-withdrawing ability in comparison to that of the typical benzophenone acceptor employed in TB-BP-DMAC. This disparity not only causes a noticeable blue shift in the emission from green to deep blue but also enhances the emission efficiency and the reverse intersystem crossing (RISC) process. As a result, TB-DMAC emits efficient deep-blue delay fluorescence with a photoluminescence quantum yield (PLQY) of 50.4% and a short lifetime of 2.28 µs in doped film. The doped and non-doped OLEDs based on TB-DMAC display efficient deep-blue electroluminescence with spectral peaks at 449 and 453 nm and maximum external quantum efficiencies (EQEs) of 6.1% and 5.7%, respectively. These findings indicate that substituted amide acceptors are a viable option for the design of high-performance deep-blue TADF materials.

10.
Research (Wash D C) ; 6: 0155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250955

RESUMEN

Thermally activated delayed fluorescence (TADF) materials with both high photoluminescence quantum yield (PLQY) and fast reverse intersystem crossing (RISC) are strongly desired to realize efficient and stable organic light-emitting diodes (OLEDs). Control of excited-state dynamics via molecular design plays a central role in optimizing the PLQY and RISC rate of TADF materials but remains challenging. Here, 3 TADF emitters possessing similar molecular structures, similar high PLQYs (89.5% to 96.3%), and approximate energy levels of the lowest excited singlet states (S1), but significantly different spin-flipping RISC rates (0.03 × 106 s-1 vs. 2.26 × 106 s-1) and exciton lifetime (297.1 to 332.8 µs vs. 6.0 µs) were systematically synthesized to deeply investigate the feasibility of spin-flip between charge-transfer excited states (3CT-1CT) transition. Experimental and theoretical studies reveal that the small singlet-triplet energy gap together with low RISC reorganization energy between the 3CT and 1CT states could provide an efficient RISC through fast spin-flip 3CT-1CT transition, without the participation of an intermediate locally excited state, which has previously been recognized as being necessary for realizing fast RISC. Finally, the OLED based on the champion TADF emitter achieves a maximum external quantum efficiency of 27.1%, a tiny efficiency roll-off of 4.1% at 1,000 cd/m2, and a high luminance of 28,150 cd/m2, which are markedly superior to those of the OLEDs employing the other 2 TADF emitters.

11.
Phys Chem Chem Phys ; 25(16): 11484-11492, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37039011

RESUMEN

Developing novel lead-free perovskite materials with suitable bandgaps and superior thermal stability is crucial to boost their applications in next-generation photovoltaic technologies. High throughput screening combined with the first principles method can accurately and effectively screen out promising perovskites. Herein, we select two lead-free all-inorganic halide double perovskite materials Cs2KMI6 (M = Ga, In) from 1026 compounds with the criteria including appropriate structure factors, positive decomposition energies, and suitable direct bandgaps. We investigated the thermal and mechanical stability, geometric and electronic structures, photoelectric properties, and defect formation energies for both perovskites Cs2KMI6 (M = Ga, In). They can exhibit excellent structural formability and stability through the analysis of structure factors, elastic constants, and stable chemical potential regions. In addition, we investigate the defect effects of Cs2KMI6 (M = Ga, In) on the photovoltaic performance by evaluating the defect formation energies and transition energy levels. Based on the HSE06 functional, we calculated the energy band structures of these two compounds and demonstrate the direct bandgaps of 1.69 eV (HSE06) and 2.16 eV (HSE06) for Cs2KGaI6 and Cs2KInI6, respectively. Moreover, we predicted excellent spectroscopic limited maximum efficiencies (SLMEs) of these two perovskites with high light absorption coefficients (around 105 cm-1), for instance, the SLME of Cs2KGaI6 can reach as high as 28.39%.

12.
Dalton Trans ; 52(6): 1616-1622, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36648100

RESUMEN

Recently, a family of [Fe2Co2] molecular capsules that display tunable electron transfer-coupled spin transition (ETCST) behavior were reported via a smart approach through Schiff-base condensation of aldehyde-functionalized 2,2-bipyridines (bpyCHO) and 1,7-heptanediamine (H2N(CH2)7NH2). Here, three more capsule complexes {[(TpR)Fe(CN)3]2[Co(bpyCN(CH2)nNCbpy)]2[ClO4]2}·n(solvent) (1, TpR = Tp*, n = 5, sol = 8DMF; 2, TpR = TpMe, n = 9, sol = 5MeCN; and 3, TpR = Tp*, n = 11, sol = 5MeCN), where Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate and TpMe = hydridotris(3-methylpyrazol-1-yl)borate are reported, demonstrating a successful extension of such an approach with other alkyldiamines of different lengths. Combined X-ray crystallographic, infrared spectroscopic and magnetic studies reveal incomplete electron transfer with either changing temperature or upon light exposure.

13.
Adv Mater ; 35(9): e2205603, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36562082

RESUMEN

Tin-based perovskite solar cells (TPSCs) are attracting intense research interest due to their excellent optoelectric properties and eco-friendly features. To further improve the device performance, developing new fullerene derivatives as electron transporter layers (ETLs) is highly demanded. Four well-defined regioisomers (trans-2, trans-3, trans-4, and e) of diethylmalonate-C60 bisadduct (DCBA) are isolated and well characterized. The well-defined molecular structure enables us to investigate the real structure-dependent effects on photovoltaic performance. It is found that the chemical structures of the regioisomers not only affect their energy levels, but also lead to significant differences in their molecular packings and interfacial contacts. As a result, the devices with trans-2, trans-3, trans-4, and e as ETLs yield efficiencies of 11.69%, 14.58%, 12.59%, and 10.55%, respectively, which are higher than that of the as-prepared DCBA-based (10.28%) device. Notably, the trans-3-based device also demonstrates a certified efficiency of 14.30%, representing one of the best-performing TPSCs.

14.
J Environ Sci (China) ; 127: 791-798, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522106

RESUMEN

PFAS (per- and polyfluoroalkyl substances) are omnipresent in the environment and their transportation and transformation have attracted increased attention. Microplastics are another potential risk substances that can serve as a carrier for ubiquitous pollutants, thus affecting the presence of PFAS in the environment. In this study, the adsorption of perfluorooctane sulfonamide (FOSA) and perfluorooctanoic acid (PFOA) on four microplastics (PE, PVC, PS, and PTFE) and their effect on the photodegradation of FOSA were studied. The adsorption capacity of FOSA by PS was the highest, in similar, PS displayed the highest adsorption capacity in the presence of PFOA. Different effects of pH and salinity on the adsorption of FOSA and PFOA were observed among different microplastics indicating inconsistent interaction mechanisms. Furthermore, FOSA could be photodegraded, with PFOA as the main product, while the presence of microplastics had a negligible effect on the degradation of this contaminant. The results indicated that microplastics could act as PFAS concentrators. Moreover, their photochemical inertias make the pollutants enriched on microplastics more resistant to degradation.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Fotólisis , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis
15.
Front Psychol ; 13: 1010767, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36544445

RESUMEN

Since the COVID-19 pandemic broke out in 2019, neuroticism has been proven a predictor of fear of COVID-19 infection. However, only few studies have been conducted on the factors affecting the relationship between neuroticism and this kind of fear. The present study is aimed at analyzing the role intolerance of uncertainty (IU) and sense of control (SOC) play in relation to neuroticism and the fear of COVID-19. We conducted a cross-sectional study in Guangdong and Guangxi provinces, China, and we collected complete datasets from 792 high school students. The main results can be described as follows: (a) individuals with high neuroticism tended to have higher intolerance of uncertainty (IU) and a lower sense of control (SOC); (b) IU and SOC played a mediating role between neuroticism and fear of COVID-19, and a serial mediation effect was found between these factors; (c) after controlling for both IU and SOC, the effect of neuroticism on fear was no longer significant. The results suggested a critical role of IU and sense of control in the causal relationship between neuroticism and fear.

16.
Phys Chem Chem Phys ; 24(44): 26948-26961, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36345810

RESUMEN

The certified power conversion efficiency of perovskite solar cells is gradually approaching that of crystalline silicon solar cells. Accordingly, considering the advantages of improved thermal stability and environmental friendliness of lead-free all-inorganic halide double perovskites (LFAIHDPs), they have attracted considerable attention in optoelectronic applications. Herein, we review the recent progress on LFAIHDPs via heterovalent substitution of the lead element, including their geometrical and electronic structures, synthetic processes, and applications in optoelectronic devices. Many experimental and theoretical efforts have been devoted to investigating the thermal stability, defects, and optoelectronic properties of lead-free all-inorganic halide double perovskite materials, which have been presented. Lastly, we discuss the application of machine learning strategies to predict novel perovskite structures with excellent thermal stability and optoelectronic performance.

17.
Angew Chem Int Ed Engl ; 61(48): e202210012, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36219474

RESUMEN

Porous supramolecular assemblies constructed by noncovalent interactions are promising for adsorptive purification of methane because of their easy regeneration. However, the poor stability arising from the weak noncovalent interactions has obstructed their practical applications. Here, we report a robust and easily regenerated polyhedron-based cationic framework assembled from a metal-organic square. This material exhibits a very low affinity for CH4 and N2 , but captures other competing gases (e.g. C2 H6 , C3 H8 , and CO2 ) with a moderate affinity. These results underpin highly selective separation of a range of gas mixtures that are relevant to natural gas and industrial off-gas. Dynamic breakthrough studies demonstrate its practical separation for C2 H6 /CH4 , C3 H8 /CH4 , CO2 /N2 , and CO2 /CH4 . Particularly, the separation time is ≈11 min g-1 for the C2 H6 /CH4 (15/85 v/v) mixture and ≈49 min g-1 for the C3 H8 /CH4 (15/85 v/v) mixture (under a flow of 2.0 mL min-1 ), respectively, enabling its capability for CH4 purification from light alkanes.


Asunto(s)
Dióxido de Carbono , Metano , Adsorción , Porosidad , Metales , Gases
18.
Dalton Trans ; 51(41): 15669-15674, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36172797

RESUMEN

It has been recognized that both the ligand fields and intermolecular interactions may greatly impact the electron-transfer-coupled spin transition (ETCST) events in switchable magnetic materials; however, the engineering of these factors within a given system is still challenging. In this article, we chose the 4,4'-substituent 2,2'-bipyridine derivatives as chelating ligands according to their increasing electron-donating strength and incremental potential for forming hydrogen bonds (bpyCHO,CH3(L1) < bpyCH2OH,CH3 (L2) < bpyCH2OH,CH2OH (L3)), and prepared three new [Fe2Co2] complexes, {[(Tp*)Fe(CN)3Co(L)2]2[ClO4]2}·Sol (1, L = L1, Sol = 4MeCN·2H2O; 2, L = L2, Sol = 3MeCN; 3, L = L3, Sol = 4MeOH; Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate). X-ray crystallography studies revealed that all the complexes share similar cyanide-bridged [Fe2Co2] square compositions except for the different substituted groups of L ligands, which led to the clearly evidenced intercluster hydrogen bonds between the neighbouring hydroxyl groups in 2 and 3. As a result, 1 remained in the paramagnetic [FeIII,LS2CoII,HS2] state over the whole temperature range, while 2 and 3 showed complete ETCST behaviour with the transition temperatures (T1/2) being 221 and 294 K, respectively.

19.
Nanomaterials (Basel) ; 12(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35889558

RESUMEN

Organic light-emitting diodes (OLEDs) with tunable emission colors, especially white OLEDs, have rarely been observed with a single emitter in a single emissive layer. In this paper, we report a new compound featuring a D-A-D structure, 9,9'-(pyrimidine-2,5-diylbis(2,1-phenylene))bis(3,6-di-tert-butyl-9H-carbazole) (PDPC). A nondoped OLED using this compound as a single emitter exhibits unique voltage-dependent dual emission. The emission colors range from blue to orange-red with an increase in voltage, during which white electroluminescence with a Commission Internationale De L'Eclairage (CIE) coordinate of (0.35, 0.29) and a color render index (CRI) value of 93 was observed. A comparative study revealed that the dual emission simultaneously originates from the monomers and excimers of the emitter. This study provides insight into understanding the multimer-excited mechanism and developing novel color-tunable OLEDs.

20.
Environ Sci Technol ; 56(12): 8496-8506, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35609006

RESUMEN

The neurodevelopmental process is highly vulnerable to environmental stress from exposure to endocrine-disrupting chemicals. Perfluorinated iodine alkanes (PFIs) possess estrogenic activities, while their potential neurodevelopmental toxicity remains blurry. In the present study, the effects of two PFIs, including dodecafluoro-1,6-diiodohexane (PFHxDI) and tridecafluorohexyl iodide (PFHxI), were investigated in the neural differentiation of the mouse embryonic stem cells (mESCs). Without influencing the cytobiological process of the mESCs, PFIs interfered the triploblastic development by increasing ectodermal differentiation, thus promoting subsequent neurogenesis. The temporal regulation of PFIs in Notch-Hes signaling through the targeting of mmu-miRNA-34a-5p provided a substantial explanation for the underlying mechanism of PFI-promoted mESC commitment to the neural lineage. The findings herein provided new knowledge on the potential neurodevelopmental toxicities of PFIs, which would help advance the health risk assessment of these kinds of emerging chemicals.


Asunto(s)
Yodo , MicroARNs , Alcanos , Animales , Diferenciación Celular/fisiología , Yoduros , Ratones , Células Madre Embrionarias de Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...