Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8: 15225, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28524881

RESUMEN

The coherent interaction between quantum emitters and photonic modes in cavities underlies many of the current strategies aiming at generating and controlling photonic quantum states. A plasmonic nanocavity provides a powerful solution for reducing the effective mode volumes down to nanometre scale, but spatial control at the atomic scale of the coupling with a single molecular emitter is challenging. Here we demonstrate sub-nanometre spatial control over the coherent coupling between a single molecule and a plasmonic nanocavity in close proximity by monitoring the evolution of Fano lineshapes and photonic Lamb shifts in tunnelling electron-induced luminescence spectra. The evolution of the Fano dips allows the determination of the effective interaction distance of ∼1 nm, coupling strengths reaching ∼15 meV and a giant self-interaction induced photonic Lamb shift of up to ∼3 meV. These results open new pathways to control quantum interference and field-matter interaction at the nanoscale.

2.
Nature ; 531(7596): 623-7, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27029277

RESUMEN

Many important energy-transfer and optical processes, in both biological and artificial systems, depend crucially on excitonic coupling that spans several chromophores. Such coupling can in principle be described in a straightforward manner by considering the coherent intermolecular dipole-dipole interactions involved. However, in practice, it is challenging to directly observe in real space the coherent dipole coupling and the related exciton delocalizations, owing to the diffraction limit in conventional optics. Here we demonstrate that the highly localized excitations that are produced by electrons tunnelling from the tip of a scanning tunnelling microscope, in conjunction with imaging of the resultant luminescence, can be used to map the spatial distribution of the excitonic coupling in well-defined arrangements of a few zinc-phthalocyanine molecules. The luminescence patterns obtained for excitons in a dimer, which are recorded for different energy states and found to resemble σ and π molecular orbitals, reveal the local optical response of the system and the dependence of the local optical response on the relative orientation and phase of the transition dipoles of the individual molecules in the dimer. We generate an in-line arrangement up to four zinc-phthalocyanine molecules, with a larger total transition dipole, and show that this results in enhanced 'single-molecule' superradiance from the oligomer upon site-selective excitation. These findings demonstrate that our experimental approach provides detailed spatial information about coherent dipole-dipole coupling in molecular systems, which should enable a greater understanding and rational engineering of light-harvesting structures and quantum light sources.

3.
J Am Chem Soc ; 135(42): 15794-800, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24066644

RESUMEN

A self-decoupled porphyrin with a tripodal anchor has been synthesized and deposited on Au(111) using different wet-chemistry methods. Nanoscale electroluminescence from single porphyrin molecules or aggregates on Au(111) has been realized by tunneling electron excitation. The molecular origin of the luminescence is established by the vibrationally resolved fluorescence spectra observed. The rigid tripodal anchor not only acts as a decoupling spacer but also controls the orientation of the molecule. Intense molecular electroluminescence can be obtained from the emission enhancement provided by a good coupling between the molecular transition dipole and the axial nanocavity plasmon. The unipolar performance of the electroluminescence from the designed tripodal molecule suggests that the porphyrin molecule is likely to be excited by the injection of hot electrons, and then the excited state decays radiatively through Franck-Condon π*-π transitions. These results open up a new route to generating electrically driven nanoscale light sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...