Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
ACS Appl Mater Interfaces ; 16(5): 5486-5503, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38284176

Cranial bone defects remain a major clinical challenge, increasing patients' life burdens. Tricarboxylic acid (TCA) cycle metabolites play crucial roles in facilitating bone tissue regeneration. However, the development of TCA cycle metabolite-modified biomimetic grafts for skull bone regeneration still needs to be improved. The mechanism underlying the release of TCA cycle metabolites from biomaterials in regulating immune responses and mesenchymal stem cell (MSC) fate (migration and differentiation) remains unknown. Herein, this work constructs biomimetic hydrogels composed of gelatin and chitosan networks covalently cross-linked by genipin (CGG hydrogels). A series of TCA cycle metabolite-coordinated CGG hydrogels with strong mechanical and antiswelling performances are subsequently developed. Remarkably, the citrate (Na3Cit, Cit)-coordinated CGG hydrogels (CGG-Cit hydrogels) with the highest mechanical modulus and strength significantly promote skull bone regeneration in rat and murine cranial defects. Mechanistically, using a transgenic mouse model, bulk RNA sequencing, and single-cell RNA sequencing, this work demonstrates that CGG-Cit hydrogels promote Gli1+ MSC migration via neutrophil-secreted oncostatin M. Results also indicate that citrate improves osteogenesis via enhanced histone H3K9 acetylation on osteogenic master genes. Taken together, the immune microenvironment- and MSC fate-regulated CGG-Cit hydrogels represent a highly efficient and facile approach toward skull bone tissue regeneration with great potential for bench-to-bedside translation.


Mesenchymal Stem Cells , Osteogenesis , Humans , Rats , Mice , Animals , Histones , Citric Acid Cycle , Acetylation , Neutrophils/metabolism , Bone Regeneration , Skull/metabolism , Cell Differentiation , Hydrogels/pharmacology , Hydrogels/metabolism , Citrates
2.
J Dent ; 138: 104695, 2023 11.
Article En | MEDLINE | ID: mdl-37714450

OBJECTIVES: Dental pulp tissue is highly vascularized. However, age-related vascular changes of the dental pulp in mice and humans remain poorly understood. We modified a novel tissue clearing method, mapped the vasculature, pericytes, and perivascular matrix in the dental pulp via high-resolution 3D imaging. METHODS: We isolated young and aged pulps from mouse teeth, and mapped vasculature through a high-resolution thick frozen sections imaging method and a modified tissue clearing method. Human dental pulps were also mapped for vasculature studying. Furthermore, young and aged human dental pulps were collected and were compared with mouse pulps through RNA- sequencing. RESULTS: Five vascular subtypes of blood vessels were found in the mouse dental pulp, which constituted the arterioles-capillaries-venules network. The density of capillaries and venules of molars declined obviously in aged mice. Among the age-dependent changes in the perivascular pulp matrix, the perivascular macrophages remarkably increased, lymphatic capillaries increased, while the nerves and extracellular matrix remained unchanged. Furthermore, the vascular patterns of human formed a complex vascular network. Both mouse and human dental pulps exhibited an inflammaging state. TNF pathway and Rap1 pathway might become promising targets for combating inflammaging and promoting angiogenesis. CONCLUSIONS: Five subtypes of blood vessels were identified within the dental pulp of mice. Notably, the density of capillaries and venules in pulps of aged mice was reduced. Furthermore, partial similarities were observed in the vascular patterns between the dental pulps of humans and mice. RNA-sequencing analysis revealed that both mouse and human dental pulps exhibit indications of an inflammaging state. CLINICAL SIGNIFICANCE: This study may contribute to unraveling potential therapeutic targets in the pulp regeneration and treatment of relevant diseases in the elderly.


Dental Pulp , Lymphatic Vessels , Aged , Humans , Mice , Animals , Regeneration , RNA
3.
J Funct Biomater ; 14(4)2023 Mar 30.
Article En | MEDLINE | ID: mdl-37103284

Hyperlipidemia refers to the abnormal increase in plasma lipid level exceeding the normal range. At present, a large number of patients require dental implantation. However, hyperlipidemia affects bone metabolism, promotes bone loss, and inhibits the osseointegration of dental implants through the mutual regulation of adipocytes, osteoblasts, and osteoclasts. This review summarized the effects of hyperlipidemia on dental implants and addressed the potential strategies of dental implants to promote osseointegration in a hyperlipidemic environment and to improve the success rate of dental implants in patients with hyperlipidemia. We summarized topical drug delivery methods to solve the interference of hyperlipidemia in osseointegration, which were local drug injection, implant surface modification and bone-grafting material modification. Statins are the most effective drugs in the treatment of hyperlipidemia, and they also encourage bone formation. Statins have been used in these three methods and have been found to be positive in promoting osseointegration. Directly coating simvastatin on the rough surface of the implant can effectively promote osseointegration of the implant in a hyperlipidemic environment. However, the delivery method of this drug is not efficient. Recently, a variety of efficient methods of simvastatin delivery, such as hydrogels and nanoparticles, have been developed to boost bone formation, but few of them were applied to dental implants. Applicating these drug delivery systems using the three aforementioned ways, according to the mechanical and biological properties of materials, could be promising ways to promote osseointegration under hyperlipidemic conditions. However, more research is needed to confirm.

...