Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE J Biomed Health Inform ; 27(8): 3924-3935, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37027679

RESUMEN

Automatic segmentation of port-wine stains (PWS) from clinical images is critical for accurate diagnosis and objective assessment of PWS. However, this is a challenging task due to the color heterogeneity, low contrast, and indistinguishable appearance of PWS lesions. To address such challenges, we propose a novel multi-color space adaptive fusion network (M-CSAFN) for PWS segmentation. First, a multi-branch detection model is constructed based on six typical color spaces, which utilizes rich color texture information to highlight the difference between lesions and surrounding tissues. Second, an adaptive fusion strategy is used to fuse complementary predictions, which address the significant differences within the lesions caused by color heterogeneity. Third, a structural similarity loss with color information is proposed to measure the detail error between predicted lesions and truth lesions. Additionally, a PWS clinical dataset consisting of 1413 image pairs was established for the development and evaluation of PWS segmentation algorithms. To verify the effectiveness and superiority of the proposed method, we compared it with other state-of-the-art methods on our collected dataset and four publicly available skin lesion datasets (ISIC 2016, ISIC 2017, ISIC 2018, and PH2). The experimental results show that our method achieves remarkable performance in comparison with other state-of-the-art methods on our collected dataset, achieving 92.29% and 86.14% on Dice and Jaccard metrics, respectively. Comparative experiments on other datasets also confirmed the reliability and potential capability of M-CSAFN in skin lesion segmentation.


Asunto(s)
Mancha Vino de Oporto , Enfermedades de la Piel , Humanos , Mancha Vino de Oporto/patología , Reproducibilidad de los Resultados , Algoritmos , Dermoscopía/métodos , Procesamiento de Imagen Asistido por Computador
2.
Front Oncol ; 11: 628577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777776

RESUMEN

OBJECTIVES: This study aimed to investigate whether radiomics classifiers from mammography can help predict tumor-infiltrating lymphocyte (TIL) levels in breast cancer. METHODS: Data from 121 consecutive patients with pathologically-proven breast cancer who underwent preoperative mammography from February 2018 to May 2019 were retrospectively analyzed. Patients were randomly divided into a training dataset (n = 85) and a validation dataset (n = 36). A total of 612 quantitative radiomics features were extracted from mammograms using the Pyradiomics software. Radiomics feature selection and radiomics classifier were generated through recursive feature elimination and logistic regression analysis model. The relationship between radiomics features and TIL levels in breast cancer patients was explored. The predictive capacity of the radiomics classifiers for the TIL levels was investigated through receiver operating characteristic curves in the training and validation groups. A radiomics score (Rad score) was generated using a logistic regression analysis method to compute the training and validation datasets, and combining the Mann-Whitney U test to evaluate the level of TILs in the low and high groups. RESULTS: Among the 121 patients, 32 (26.44%) exhibited high TIL levels, and 89 (73.56%) showed low TIL levels. The ER negativity (p = 0.01) and the Ki-67 negative threshold level (p = 0.03) in the low TIL group was higher than that in the high TIL group. Through the radiomics feature selection, six top-class features [Wavelet GLDM low gray-level emphasis (mediolateral oblique, MLO), GLRLM short-run low gray-level emphasis (craniocaudal, CC), LBP2D GLRLM short-run high gray-level emphasis (CC), LBP2D GLDM dependence entropy (MLO), wavelet interquartile range (MLO), and LBP2D median (MLO)] were selected to constitute the radiomics classifiers. The radiomics classifier had an excellent predictive performance for TIL levels both in the training and validation sets [area under the curve (AUC): 0.83, 95% confidence interval (CI), 0.738-0.917, with positive predictive value (PPV) of 0.913; AUC: 0.79, 95% CI, 0.615-0.964, with PPV of 0.889, respectively]. Moreover, the Rad score in the training dataset was higher than that in the validation dataset (p = 0.007 and p = 0.001, respectively). CONCLUSION: Radiomics from digital mammograms not only predicts the TIL levels in breast cancer patients, but can also serve as non-invasive biomarkers in precision medicine, allowing for the development of treatment plans.

3.
Front Oncol ; 10: 412, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351879

RESUMEN

Objectives: Tumor-infiltrating lymphocytes (TILs) have been identified as a significant prognostic indicator of response to neoadjuvant therapy and immunotherapy for triple-negative breast cancer (TNBC) patients. Herein, we aim to assess the association between TIL levels and mammographic features in TNBC patients. Methods: Forty-three patients with surgically proven TNBC who underwent preoperative mammography from January 2018 to December 2018 were recruited. Pyradiomics software was used to extract 204 quantitative radiomics features, including morphologic, grayscale, and textural features, from the segmented lesion areas. The correlation between radiological characteristics and TIL levels was evaluated by screening the most statistically significant radiological features using Mann-Whitney U-test and Pearson correlation coefficient. The patients were divided into two groups based on tumor TIL levels: patients with TIL levels <50% and those with TIL levels ≥50%. The correlation between TIL levels and clinicopathological characteristics was assessed using the chi-square test or Fisher's exact test. Mann-Whitney U-test and Pearson correlation coefficient were used to analyze the statistical significance and Pearson correlation coefficient of clinical pathological features, age, and radiological features. Results: Of 43 patients, 32 (74.4%) had low TIL levels and 11 (25.6%) had high TIL levels. The histological grade of the low TIL group was higher than that of the high TIL group (p = 0.043). The high TIL group had a more negative threshold Ki-67 level (<14%) than the low TIL group (p = 0.017). The six most important radiomics features [uniformity, variance, grayscale symbiosis matrix (GLCM) correlation, GLCM autocorrelation, gray level difference matrix (GLDM) low gray level emphasis, and neighborhood gray-tone difference matrix (NGTDM) contrast], representing qualitative mammographic image characteristics, were statistically different (p < 0.05) among the low and high TIL groups. Tumors in the high TIL group had a more non-uniform density and a smoother gradient of the tumor pattern than the low TIL group. The changes in Ki-67, age, epidermal growth factor receptor, radiomic characteristics, and Pearson correlation coefficient were statistically significant (p < 0.05). Conclusion: Mammography features not only distinguish high and low TIL levels in TNBC patients but also can act as imaging biomarkers to enhance diagnosis and the response of patients to neoadjuvant therapies and immunotherapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...