Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Intervalo de año de publicación
1.
Conserv Biol ; : e14368, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225250

RESUMEN

Accelerating rate of human impact and environmental change severely affects marine biodiversity and increases the urgency to implement the Convention on Biological Diversity (CBD) 30×30 plan for conserving 30% of sea areas by 2030. However, area-based conservation targets are complex to identify in a 3-dimensional (3D) ocean where deep-sea features such as seamounts have been seldom studied mostly due to challenging methodologies to implement at great depths. Yet, the use of emerging technologies, such as environmental DNA combined with modern modeling frameworks, could help address the problem. We collected environmental DNA, echosounder acoustic, and video data at 15 seamounts and deep island slopes across the Coral Sea. We modeled 7 fish community metrics and the abundances of 45 individual species and molecular operational taxonomic units (MOTUs) in benthic and pelagic waters (down to 600-m deep) with boosted regression trees and generalized joint attribute models to describe biodiversity on seamounts and deep slopes and identify 3D protection solutions for achieving the CBD area target in New Caledonia (1.4 million km2). We prioritized the identified conservation units in a 3D space, based on various biodiversity targets, to meet the goal of protecting at least 30% of the spatial domain, with a focus on areas with high biodiversity. The relationship between biodiversity protection targets and the spatial area protected by the solution was linear. The scenario protecting 30% of each biodiversity metric preserved almost 30% of the considered spatial domain and accounted for the 3D distribution of biodiversity. Our study paves the way for the use of combined data collection methodologies to improve biodiversity estimates in 3D structured marine environments for the selection of conservation areas and for the use of biodiversity targets to achieve area-based international targets.


Planeación tridimensional de la conservación de las medidas de biodiversidad de peces para lograr el objetivo de conservación 30x30 de mar profundo Resumen El impacto antropogénico y el cambio ambiental acelerados afectan gravemente a la biodiversidad marina y aumentan la urgencia de aplicar el plan 30x30 del Convenio sobre la Diversidad Biológica (CDB) para conservar el 30% de las zonas marinas para el 2030. Sin embargo, la identificación de objetivos de conservación basados en zonas es compleja en un océano tridimensional (3D) en el que rara vez se han estudiado las características de las profundidades marinas, como los montes marinos, sobre todo por la dificultad de aplicar metodologías a grandes profundidades. No obstante, el uso de tecnologías emergentes, como el ADN ambiental combinado con marcos actuales de modelación, podría ayudar a resolver el problema. Recopilamos datos de ADN ambiental, acústica de ecosonda y video en 15 montes marinos y taludes de islas profundas del mar del Coral. Modelamos siete medidas de comunidades de peces y 45 abundancias de especies individuales y unidades taxonómicas moleculares (UTOM) en aguas bentónicas y pelágicas (hasta 600 m de profundidad) con árboles de regresión reforzada (ARR) y modelos de atributos conjuntos generalizados (MACJ) para describir la biodiversidad en los montes marinos y taludes profundos e identificar soluciones de protección en 3D para alcanzar el objetivo de área del CDB en Nueva Caledonia (1.4 millones de km2). Priorizamos las unidades de conservación identificadas en un espacio 3D con base en varios objetivos de biodiversidad para cumplir el objetivo de proteger al menos el 30% del dominio espacial con un enfoque en las zonas con una gran biodiversidad. La relación entre los objetivos de protección de la biodiversidad y el área espacial protegida por la solución fue lineal. El escenario que protegía el 30% de cada medida de biodiversidad preservó casi el 30% del dominio espacial considerado y consideró la distribución tridimensional de la biodiversidad. Nuestro estudio prepara el camino para el uso de metodologías combinadas de recopilación de datos con el fin de mejorar las estimaciones de biodiversidad en entornos marinos estructurados en 3D para la selección de áreas de conservación y para el uso de objetivos de biodiversidad con el fin de alcanzar objetivos internacionales basados en áreas.

2.
Nat Commun ; 15(1): 6593, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097578

RESUMEN

Tropical and extra-tropical storms generate extreme waves, impacting both nearby and remote regions through swell propagation. Despite their devastating effects in tropical areas, the contribution of tropical cyclones (TCs) to global wave-induced coastal risk remains unknown. Here, we enable a quantitative assessment of TC's role in extreme waves approaching global coastlines, by designing twin oceanic wave simulations with and without realistic TC wind forcing. We find that TCs substantially contribute to extreme breaking heights in tropical regions (35-50% on average), reaching 100% in high-density TC areas like the North Pacific. TCs also impact remote TC-free regions, such as the equatorial Pacific experiencing in average 30% of its extreme wave events due to TCs. Interannual variability amplifies TC-induced wave hazards, notably during El Niño in the Central Pacific, and La Niña in the South China Sea, Caribbean Arc, and South Indian Ocean coastlines. This research offers critical insights for global risk management and preparedness.

3.
Nat Commun ; 15(1): 4834, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844446

RESUMEN

Oceanic eddies are recognized as pivotal components in marine ecosystems, believed to concentrate a wide range of marine life spanning from phytoplankton to top predators. Previous studies have posited that marine predators are drawn to these eddies due to an aggregation of their forage fauna. In this study, we examine the response of forage fauna, detected by shipboard acoustics, across a broad sample of a thousand eddies across the world's oceans. While our findings show an impact of eddies on surface temperatures and phytoplankton in most cases, they reveal that only a minority (13%) exhibit significant effects on forage fauna, with only 6% demonstrating an oasis effect. We also show that an oasis effect can occur both in anticyclonic and cyclonic eddies, and that the few high-impact eddies are marked by high eddy amplitude and strong water-mass-trapping. Our study underscores the nuanced and complex nature of the aggregating role of oceanic eddies, highlighting the need for further research to elucidate how these structures attract marine predators.


Asunto(s)
Ecosistema , Océanos y Mares , Fitoplancton , Animales , Fitoplancton/fisiología , Temperatura , Organismos Acuáticos/fisiología , Conducta Predatoria/fisiología , Acústica
4.
Glob Chang Biol ; 30(5): e17317, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747199

RESUMEN

Each year, an average of 45 tropical cyclones affect coastal areas and potentially impact forests. The proportion of the most intense cyclones has increased over the past four decades and is predicted to continue to do so. Yet, it remains uncertain how topographical exposure and tree characteristics can mediate the damage caused by increasing wind speed. Here, we compiled empirical data on the damage caused by 11 cyclones occurring over the past 40 years, from 74 forest plots representing tropical regions worldwide, encompassing field data for 22,176 trees and 815 species. We reconstructed the wind structure of those tropical cyclones to estimate the maximum sustained wind speed (MSW) and wind direction at the studied plots. Then, we used a causal inference framework combined with Bayesian generalised linear mixed models to understand and quantify the causal effects of MSW, topographical exposure to wind (EXP), tree size (DBH) and species wood density (ρ) on the proportion of damaged trees at the community level, and on the probability of snapping or uprooting at the tree level. The probability of snapping or uprooting at the tree level and, hence, the proportion of damaged trees at the community level, increased with increasing MSW, and with increasing EXP accentuating the damaging effects of cyclones, in particular at higher wind speeds. Higher ρ decreased the probability of snapping and to a lesser extent of uprooting. Larger trees tended to have lower probabilities of snapping but increased probabilities of uprooting. Importantly, the effect of ρ decreasing the probabilities of snapping was more marked for smaller than larger trees and was further accentuated at higher MSW. Our work emphasises how local topography, tree size and species wood density together mediate cyclone damage to tropical forests, facilitating better predictions of the impacts of such disturbances in an increasingly windier world.


Asunto(s)
Tormentas Ciclónicas , Bosques , Árboles , Clima Tropical , Viento , Árboles/crecimiento & desarrollo , Teorema de Bayes
5.
PLoS Negl Trop Dis ; 18(4): e0011717, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662800

RESUMEN

BACKGROUND: Leptospirosis is a neglected zoonosis which remains poorly known despite its epidemic potential, especially in tropical islands where outdoor lifestyle, vulnerability to invasive reservoir species and hot and rainy climate constitute higher risks for infections. Burden remains poorly documented while outbreaks can easily overflow health systems of these isolated and poorly populated areas. Identification of generic patterns driving leptospirosis dynamics across tropical islands would help understand its epidemiology for better preparedness of communities. In this study, we aim to model leptospirosis seasonality and outbreaks in tropical islands based on precipitation and temperature indicators. METHODOLOGY/PRINCIPAL FINDINGS: We adjusted machine learning models on leptospirosis surveillance data from seven tropical islands (Guadeloupe, Reunion Island, Fiji, Futuna, New Caledonia, and Tahiti) to investigate 1) the effect of climate on the disease's seasonal dynamic, i.e., the centered seasonal profile and 2) inter-annual anomalies, i.e., the incidence deviations from the seasonal profile. The model was then used to estimate seasonal dynamics of leptospirosis in Vanuatu and Puerto Rico where disease incidence data were not available. A robust model, validated across different islands with leave-island-out cross-validation and based on current and 2-month lagged precipitation and current and 1-month lagged temperature, can be constructed to estimate the seasonal dynamic of leptospirosis. In opposition, climate determinants and their importance in estimating inter-annual anomalies highly differed across islands. CONCLUSIONS/SIGNIFICANCE: Climate appears as a strong determinant of leptospirosis seasonality in tropical islands regardless of the diversity of the considered environments and the different lifestyles across the islands. However, predictive and expandable abilities from climate indicators weaken when estimating inter-annual outbreaks and emphasize the importance of these local characteristics in the occurrence of outbreaks.


Asunto(s)
Leptospirosis , Estaciones del Año , Clima Tropical , Leptospirosis/epidemiología , Leptospirosis/microbiología , Humanos , Brotes de Enfermedades , Incidencia , Islas , Aprendizaje Automático , Temperatura , Puerto Rico/epidemiología , Vanuatu/epidemiología , Animales
6.
Artículo en Inglés | MEDLINE | ID: mdl-37719233

RESUMEN

Mosquito-borne viruses are leading causes of morbidity and mortality in many parts of the world. In recent years, modelling studies have shown that climate change strongly influences vector-borne disease transmission, particularly rising temperatures. As a result, the risk of epidemics has increased, posing a significant public health risk. This review aims to summarize all published laboratory experimental studies carried out over the years to determine the impact of temperature on the transmission of arboviruses by the mosquito vector. Given their high public health importance, we focus on dengue, chikungunya, and Zika viruses, which are transmitted by the mosquitoes Aedes aegypti and Aedes albopictus. Following PRISMA guidelines, 34 papers were included in this systematic review. Most studies found that increasing temperatures result in higher rates of infection, dissemination, and transmission of these viruses in mosquitoes, although several studies had differing findings. Overall, the studies reviewed here suggest that rising temperatures due to climate change would alter the vector competence of mosquitoes to increase epidemic risk, but that some critical research gaps remain.

7.
Environ Health Perspect ; 130(12): 127002, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36473499

RESUMEN

BACKGROUND: Aedes aegypti and Ae. albopictus mosquitoes are major vectors for several human diseases of global importance, such as dengue and yellow fever. Their life cycles and hosted arboviruses are climate sensitive and thus expected to be impacted by climate change. Most studies investigating climate change impacts on Aedes at global or continental scales focused on their future global distribution changes, whereas a single study focused on its effects on Ae. aegypti densities regionally. OBJECTIVES: A process-based approach was used to model densities of Ae. aegypti and Ae. albopictus and their potential evolution with climate change using a panel of nine CMIP6 climate models and climate scenarios ranging from strong to low mitigation measures at the Southeast Asian scale and for the next 80 y. METHODS: The process-based model described, through a system of ordinary differential equations, the variations of mosquito densities in 10 compartments, corresponding to 10 different stages of mosquito life cycle, in response to temperature and precipitation variations. Local field data were used to validate model outputs. RESULTS: We show that both species densities will globally increase due to future temperature increases. In Southeast Asia by the end of the century, Ae. aegypti densities are expected to increase from 25% with climate mitigation measures to 46% without; Ae. albopictus densities are expected to increase from 13%-21%, respectively. However, we find spatially contrasted responses at the seasonal scales with a significant decrease in Ae. albopictus densities in lowlands during summer in the future. DISCUSSION: These results contrast with previous results, which brings new insight on the future impacts of climate change on Aedes densities. Major sources of uncertainties, such as mosquito model parametrization and climate model uncertainties, were addressed to explore the limits of such modeling. https://doi.org/10.1289/EHP11068.


Asunto(s)
Cambio Climático , Humanos
8.
Trends Plant Sci ; 27(12): 1218-1230, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36244895

RESUMEN

Global change is altering interactions between ecological disturbances. We review interactions between tropical cyclones and fires that affect woody biomes in many islands and coastal areas. Cyclone-induced damage to trees can increase fuel loads on the ground and dryness in the understory, which increases the likelihood, intensity, and area of subsequent fires. In forest biomes, cyclone-fire interactions may initiate a grass-fire cycle and establish stable open-canopy biomes. In cyclone-prone regions, frequent cyclone-enhanced fires may generate and maintain stable open-canopy biomes (e.g., savannas and woodlands). We discuss how global change is transforming fire and cyclone regimes, extensively altering cyclone-fire interactions. These altered cyclone-fire interactions are shifting biomes away from historical states and causing loss of biodiversity.


Asunto(s)
Tormentas Ciclónicas , Incendios , Ecosistema , Árboles , Bosques
9.
Sci Total Environ ; 832: 155018, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390383

RESUMEN

Leptospirosis is a neglected waterborne zoonosis of growing concern in tropical and low-income regions. Endemic in Southeast Asia, its distribution and environmental factors such as climate controlling its dynamics remain poorly documented. In this paper, we investigate for the first time the current and future leptospirosis burden at a local scale in mainland Southeast Asia. We adjusted machine-learning models on incidence reports from the Thai surveillance system to identify environmental determinants of leptospirosis. The explanatory variables tested in our models included climate, topographic, land cover and soil variables. The model performing the best in cross-validation was used to estimate the current incidence regionally in Thailand, Myanmar, Cambodia, Vietnam and Laos. It then allowed to predict the spatial distribution of leptospirosis future burden from 2021 to 2100 based on an ensemble of CMIP6 climate model projections and 4 Shared Socio-economics Pathways ranging from the most optimistic to the no-climate policy outcomes (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). Leptospirosis incidence was best estimated by 10 environmental variables: four landscape-, four rainfall-, two temperature-related variables. Of all tested scenario, the worst-case scenario of climate change (SSP5-8.5) surprisingly appeared as the best-case scenario for the future of leptospirosis since it would induce a significant global decline in disease incidence in Southeast Asia mainly driven by the increasing temperatures. These global patterns are however contrasted regionally with some regions showing increased incidence in the future. Our work highlights climate and the environment as major drivers of leptospirosis incidence in Southeast Asia. Applying our model to regions where leptospirosis is not routinely monitored suggests an overlooked burden in the region. As our model focuses on leptospirosis responses to environmental drivers only, some other factors, such as poverty, lifestyle or behavioral changes, could further influence these estimated future patterns.


Asunto(s)
Cambio Climático , Leptospirosis , Asia Sudoriental/epidemiología , Predicción , Humanos , Leptospirosis/epidemiología , Temperatura
10.
Environ Health ; 21(1): 20, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35057822

RESUMEN

BACKGROUND: Dengue dynamics result from the complex interactions between the virus, the host and the vector, all being under the influence of the environment. Several studies explored the link between weather and dengue dynamics and some investigated the impact of climate change on these dynamics. Most attempted to predict incidence rate at a country scale or assess the environmental suitability at a global or regional scale. Here, we propose a new approach which consists in modeling the risk of dengue outbreak at a local scale according to climate conditions and study the evolution of this risk taking climate change into account. We apply this approach in New Caledonia, where high quality data are available. METHODS: We used a statistical estimation of the effective reproduction number (Rt) based on case counts to create a categorical target variable : epidemic week/non-epidemic week. A machine learning classifier has been trained using relevant climate indicators in order to estimate the probability for a week to be epidemic under current climate data and this probability was then estimated under climate change scenarios. RESULTS: Weekly probability of dengue outbreak was best predicted with the number of days when maximal temperature exceeded 30.8°C and the mean of daily precipitation over 80 and 60 days prior to the predicted week respectively. According to scenario RCP8.5, climate will allow dengue outbreak every year in New Caledonia if the epidemiological and entomological contexts remain the same. CONCLUSION: We identified locally relevant climatic factor driving dengue outbreaks in New Caledonia and assessed the inter-annual and seasonal risk of dengue outbreak under different climate change scenarios up to the year 2100. We introduced a new modeling approach to estimate the risk of dengue outbreak depending on climate conditions. This approach is easily reproducible in other countries provided that reliable epidemiological and climate data are available.


Asunto(s)
Dengue , Cambio Climático , Dengue/epidemiología , Brotes de Enfermedades , Humanos , Nueva Caledonia/epidemiología , Tiempo (Meteorología)
11.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34983875

RESUMEN

Pacific Ocean tuna is among the most-consumed seafood products but contains relatively high levels of the neurotoxin methylmercury. Limited observations suggest tuna mercury levels vary in space and time, yet the drivers are not well understood. Here, we map mercury concentrations in skipjack tuna across the Pacific Ocean and build generalized additive models to quantify the anthropogenic, ecological, and biogeochemical drivers. Skipjack mercury levels display a fivefold spatial gradient, with maximum concentrations in the northwest near Asia, intermediate values in the east, and the lowest levels in the west, southwest, and central Pacific. Large spatial differences can be explained by the depth of the seawater methylmercury peak near low-oxygen zones, leading to enhanced tuna mercury concentrations in regions where oxygen depletion is shallow. Despite this natural biogeochemical control, the mercury hotspot in tuna caught near Asia is explained by elevated atmospheric mercury concentrations and/or mercury river inputs to the coastal shelf. While we cannot ignore the legacy mercury contribution from other regions to the Pacific Ocean (e.g., North America and Europe), our results suggest that recent anthropogenic mercury release, which is currently largest in Asia, contributes directly to present-day human mercury exposure.


Asunto(s)
Mercurio/análisis , Compuestos de Metilmercurio/análisis , Atún , Animales , Asia , Ecología , Monitoreo del Ambiente/métodos , Europa (Continente) , Cadena Alimentaria , Sedimentos Geológicos/química , Humanos , Metilación , Modelos Teóricos , América del Norte , Océano Pacífico , Alimentos Marinos , Agua de Mar , Contaminantes del Agua , Contaminantes Químicos del Agua/análisis
12.
Chemosphere ; 263: 128024, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297047

RESUMEN

Global anthropogenic mercury (Hg) emissions to the atmosphere since industrialization are widely considered to be responsible for a significant increase in surface ocean Hg concentrations. Still unclear is how those inputs are converted into toxic methylmercury (MeHg) then transferred and biomagnified in oceanic food webs. We used a unique long-term and continuous dataset to explore the temporal Hg trend and variability of three tropical tuna species (yellowfin, bigeye, and skipjack) from the southwestern Pacific Ocean between 2001 and 2018 (n = 590). Temporal trends of muscle nitrogen (δ15N) and carbon (δ13C) stable isotope ratios, amino acid (AA) δ15N values and oceanographic variables were also investigated to examine the potential influence of trophic, biogeochemical and physical processes on the temporal variability of tuna Hg concentrations. For the three species, we detected significant inter-annual variability but no significant long-term trend for Hg concentrations. Inter-annual variability was related to the variability in tuna sampled lengths among years and to tuna muscle δ15N and δ13C values. Complementary AA- and model-estimated phytoplankton δ15N values suggested the influence of baseline processes with enhanced tuna Hg concentrations observed when dinitrogen fixers prevail, possibly fuelling baseline Hg methylation and/or MeHg bioavailability at the base of the food web. Our results show that MeHg trends in top predators do not necessary capture the increasing Hg concentrations in surface waters suspected at the global oceanic scale due to the complex and variable processes governing Hg deposition, methylation, bioavailability and biomagnification. This illustrates the need for long-term standardized monitoring programs of marine biota worldwide.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Cadena Alimentaria , Mercurio/análisis , Océanos y Mares , Océano Pacífico , Atún , Contaminantes Químicos del Agua/análisis
13.
Mar Pollut Bull ; 160: 111576, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32861941

RESUMEN

Temperature is important for pearl oyster reproduction, pelagic larval duration, and growth in the context of pearl farming, but has seldom been monitored over long periods in remote atolls. To test if satellite-derived Sea Surface Temperature (SST) could provide a solution, two daily global SST products were compared with 18 high-precision loggers deployed during 10-months in the wide Raroia atoll (Tuamotu Archipelago, French Polynesia). The Multi-scale-Ultra-high-Resolution (MUR) SST was better correlated with lagoon temperature (r > 0.97) than the Global-Foundation-Sea-Surface-Temperature-Analysis (G1SST) SST (r < 0.94). Differences between observations and MUR SST ranged between -0.75 °C and + 1.12 °C and were influenced by seasons and locations, depth, and hours of measurements. Within this uncertainty range, simulations using a Dynamic Energy Budget model predicted similar life traits of oysters. Therefore, MUR SST appears suitable to monitor lagoon temperature in wide atolls, model oyster population dynamics and assist pearl oyster research and management.


Asunto(s)
Acuicultura , Pinctada , Agricultura , Animales , Polinesia , Temperatura
14.
Glob Chang Biol ; 26(2): 458-470, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578765

RESUMEN

Considerable uncertainty remains over how increasing atmospheric CO2 and anthropogenic climate changes are affecting open-ocean marine ecosystems from phytoplankton to top predators. Biological time series data are thus urgently needed for the world's oceans. Here, we use the carbon stable isotope composition of tuna to provide a first insight into the existence of global trends in complex ecosystem dynamics and changes in the oceanic carbon cycle. From 2000 to 2015, considerable declines in δ13 C values of 0.8‰-2.5‰ were observed across three tuna species sampled globally, with more substantial changes in the Pacific Ocean compared to the Atlantic and Indian Oceans. Tuna recorded not only the Suess effect, that is, fossil fuel-derived and isotopically light carbon being incorporated into marine ecosystems, but also recorded profound changes at the base of marine food webs. We suggest a global shift in phytoplankton community structure, for example, a reduction in 13 C-rich phytoplankton such as diatoms, and/or a change in phytoplankton physiology during this period, although this does not rule out other concomitant changes at higher levels in the food webs. Our study establishes tuna δ13 C values as a candidate essential ocean variable to assess complex ecosystem responses to climate change at regional to global scales and over decadal timescales. Finally, this time series will be invaluable in calibrating and validating global earth system models to project changes in marine biota.


Asunto(s)
Fitoplancton , Atún , Animales , Isótopos de Carbono , Ecosistema , Océano Índico , Océanos y Mares , Océano Pacífico
15.
Trop Med Infect Dis ; 4(2)2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226729

RESUMEN

Arboviruses are viruses transmitted to humans by the bite of infected mosquito vectors. Over the last decade, arbovirus circulation has increasingly been detected in New Caledonia (NC), a French island territory located in the subtropical Pacific region. Reliable epidemiological, entomological, virological and climate data have been collected in NC over the last decade. Here, we describe these data and how they inform arboviruses' epidemiological profile. We pinpoint areas which remain to be investigated to fully understand the peculiar epidemiological profile of arbovirus circulation in NC. Further, we discuss the advantages of conducting studies on arboviruses dynamics in NC. Overall, we show that conclusions drawn from observations conducted in NC may inform epidemiological risk assessments elsewhere and may be vital to guide surveillance and response, both in New Caledonia and beyond.

16.
Environ Sci Technol ; 53(3): 1422-1431, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30672293

RESUMEN

Information on ocean scale drivers of methylmercury levels and variability in tuna is scarce, yet crucial in the context of anthropogenic mercury (Hg) inputs and potential threats to human health. Here we assess Hg concentrations in three commercial tuna species (bigeye, yellowfin, and albacore, n = 1000) from the Western and Central Pacific Ocean (WCPO). Models were developed to map regional Hg variance and understand the main drivers. Mercury concentrations are enriched in southern latitudes (10°S-20°S) relative to the equator (0°-10°S) for each species, with bigeye exhibiting the strongest spatial gradients. Fish size is the primary factor explaining Hg variance but physical oceanography also contributes, with higher Hg concentrations in regions exhibiting deeper thermoclines. Tuna trophic position and oceanic primary productivity were of weaker importance. Predictive models perform well in the Central Equatorial Pacific and Hawaii, but underestimate Hg concentrations in the Eastern Pacific. A literature review from the global ocean indicates that size tends to govern tuna Hg concentrations, however regional information on vertical habitats, methylmercury production, and/or Hg inputs are needed to understand Hg distribution at a broader scale. Finally, this study establishes a geographical context of Hg levels to weigh the risks and benefits of tuna consumption in the WCPO.


Asunto(s)
Mercurio , Atún , Animales , Hawaii , Humanos , Océanos y Mares , Océano Pacífico
17.
Sci Rep ; 8(1): 9075, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899568

RESUMEN

In the Western Tropical South Pacific, patches of high chlorophyll concentrations linked to the occurrence of N2-fixing organisms are found in the vicinity of volcanic islands. The survival of these organisms relies on a high bioavailable iron supply whose origin and fluxes remain unknown. Here, we measured high dissolved iron (DFe) concentrations (up to 66 nM) in the euphotic layer, extending zonally over 10 degrees longitude (174 E-175 W) at ∼20°S latitude. DFe atmospheric fluxes were at the lower end of reported values of the remote ocean and could not explain the high DFe concentrations measured in the water column in the vicinity of Tonga. We argue that the high DFe concentrations may be sustained by a submarine source, also characterized by freshwater input and recorded as salinity anomalies by Argo float in situ measurements and atlas data. The observed negative salinity anomalies are reproduced by simulations from a general ocean circulation model. Submarine iron sources reaching the euphotic layer may impact nitrogen fixation across the whole region.

18.
Sci Rep ; 7(1): 3721, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28623288

RESUMEN

Seabirds concentrate nutrients from large marine areas on their nesting islands playing an important ecological role in nutrient transfer between marine and terrestrial ecosystems. Here we investigate the role of guano on corals reefs across scales by analyzing the stable nitrogen isotopic (δ15N) values of the scleractinian coral Pocillopora damicornis on fringing reefs around two Pacific remote islets with large seabird colonies. Marine stations closest to the seabird colonies had higher nitrate + nitrite concentrations compared to more distant stations. Coral and zooxanthellae δ15N values were also higher at these sites, suggesting that guano-derived nitrogen is assimilated into corals and contributes to their nitrogen requirements. The spatial extent of guano influence was however restricted to a local scale. Our results demonstrate that seabird-derived nutrients not only spread across the terrestrial ecosystem, but also affect components of the adjacent marine ecosystem. Further studies are now needed to assess if this nutrient input has a positive or negative effect for corals. Such studies on remote islets also open fresh perspectives to understand how nutrients affect coral reefs isolated from other anthropogenic stressors.


Asunto(s)
Antozoos , Aves , Arrecifes de Coral , Cadena Alimentaria , Nitrógeno , Animales , Antozoos/química , Ecosistema , Isótopos , Nitrógeno/análisis , Nitrógeno/química , Nutrientes/análisis , Nutrientes/química , Océano Pacífico
19.
PLoS Negl Trop Dis ; 11(4): e0005471, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28369149

RESUMEN

BACKGROUND: Dengue is a mosquito-borne virus that causes extensive morbidity and economic loss in many tropical and subtropical regions of the world. Often present in cities, dengue virus is rapidly spreading due to urbanization, climate change and increased human movements. Dengue cases are often heterogeneously distributed throughout cities, suggesting that small-scale determinants influence dengue urban transmission. A better understanding of these determinants is crucial to efficiently target prevention measures such as vector control and education. The aim of this study was to determine which socioeconomic and environmental determinants were associated with dengue incidence in an urban setting in the Pacific. METHODOLOGY: An ecological study was performed using data summarized by neighborhood (i.e. the neighborhood is the unit of analysis) from two dengue epidemics (2008-2009 and 2012-2013) in the city of Nouméa, the capital of New Caledonia. Spatial patterns and hotspots of dengue transmission were assessed using global and local Moran's I statistics. Multivariable negative binomial regression models were used to investigate the association between dengue incidence and various socioeconomic and environmental factors throughout the city. PRINCIPAL FINDINGS: The 2008-2009 epidemic was spatially structured, with clusters of high and low incidence neighborhoods. In 2012-2013, dengue incidence rates were more homogeneous throughout the city. In all models tested, higher dengue incidence rates were consistently associated with lower socioeconomic status (higher unemployment, lower revenue or higher percentage of population born in the Pacific, which are interrelated). A higher percentage of apartments was associated with lower dengue incidence rates during both epidemics in all models but one. A link between vegetation coverage and dengue incidence rates was also detected, but the link varied depending on the model used. CONCLUSIONS: This study demonstrates a robust spatial association between dengue incidence rates and socioeconomic status across the different neighborhoods of the city of Nouméa. Our findings provide useful information to guide policy and help target dengue prevention efforts where they are needed most.


Asunto(s)
Dengue/epidemiología , Dengue/transmisión , Transmisión de Enfermedad Infecciosa , Ambiente , Factores Socioeconómicos , Adulto , Ciudades/epidemiología , Humanos , Incidencia , Nueva Caledonia/epidemiología , Topografía Médica
20.
J Geophys Res Oceans ; 121(12): 8635-8669, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32818130

RESUMEN

The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO3), mixed layer depth (MLD), euphotic layer depth (Zeu), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO3, MLD, and Zeu throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free versus ice-influenced) and bottom depth (shelf versus deep ocean). The models performed relatively well for the most recent decade and toward the end of Arctic summer. In the Barents and Greenland Seas, regional model skill of surface NO3 was best associated with how well MLD was reproduced. Regionally, iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration, respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our study suggests that better parameterization of biological and ecological microbial rates (phytoplankton growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA