Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 39(17): e104337, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32677087

RESUMEN

Integration of transposable elements into the genome is mutagenic. Mechanisms targeting integrations into relatively safe locations, hence minimizing deleterious consequences for cell fitness, have emerged during evolution. In budding yeast, integration of the Ty1 LTR retrotransposon upstream of RNA polymerase III (Pol III)-transcribed genes requires interaction between Ty1 integrase (IN1) and AC40, a subunit common to Pol I and Pol III. Here, we identify the Ty1 targeting domain of IN1 that ensures (i) IN1 binding to Pol I and Pol III through AC40, (ii) IN1 genome-wide recruitment to Pol I- and Pol III-transcribed genes, and (iii) Ty1 integration only at Pol III-transcribed genes, while IN1 recruitment by AC40 is insufficient to target Ty1 integration into Pol I-transcribed genes. Swapping the targeting domains between Ty5 and Ty1 integrases causes Ty5 integration at Pol III-transcribed genes, indicating that the targeting domain of IN1 alone confers Ty1 integration site specificity.


Asunto(s)
Integrasas/metabolismo , ARN Polimerasa III/metabolismo , ARN Polimerasa I/metabolismo , ARN de Transferencia/genética , Retroelementos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Integrasas/genética , ARN Polimerasa I/genética , ARN Polimerasa III/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Science ; 348(6234): 585-8, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25931562

RESUMEN

Mobile genetic elements are ubiquitous. Their integration site influences genome stability and gene expression. The Ty1 retrotransposon of the yeast Saccharomyces cerevisiae integrates upstream of RNA polymerase III (Pol III)-transcribed genes, yet the primary determinant of target specificity has remained elusive. Here we describe an interaction between Ty1 integrase and the AC40 subunit of Pol III and demonstrate that AC40 is the predominant determinant targeting Ty1 integration upstream of Pol III-transcribed genes. Lack of an integrase-AC40 interaction dramatically alters target site choice, leading to a redistribution of Ty1 insertions in the genome, mainly to chromosome ends. The mechanism of target specificity allows Ty1 to proliferate and yet minimizes genetic damage to its host.


Asunto(s)
ARN Polimerasa III/metabolismo , Retroelementos/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Cromosomas Fúngicos/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Integrasas/metabolismo , ARN de Transferencia/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
FEMS Microbiol Lett ; 362(1): 1-10, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25790500

RESUMEN

Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes.


Asunto(s)
Bacteriófagos/genética , Reordenamiento Génico , Genoma Bacteriano , Recombinación Genética , Interacciones Huésped-Parásitos , Profagos/genética
4.
Proc Natl Acad Sci U S A ; 110(35): 14414-9, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940369

RESUMEN

Prophages represent a large fraction of prokaryotic genomes and often provide new functions to their hosts, in particular virulence and fitness. How prokaryotic cells maintain such gene providers is central for understanding bacterial genome evolution by horizontal transfer. Prophage excision occurs through site-specific recombination mediated by a prophage-encoded integrase. In addition, a recombination directionality factor (or excisionase) directs the reaction toward excision and prevents the phage genome from being reintegrated. In this work, we describe the role of the transcription termination factor Rho in prophage maintenance through control of the synthesis of transcripts that mediate recombination directionality factor expression and, thus, excisive recombination. We show that Rho inhibition by bicyclomycin allows for the expression of prophage genes that lead to excisive recombination. Thus, besides its role in the silencing of horizontally acquired genes, Rho also maintains lysogeny of defective and functional prophages.


Asunto(s)
Colifagos/fisiología , Escherichia coli/virología , Genoma Bacteriano , Profagos/fisiología , Regiones Terminadoras Genéticas , Transcripción Genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Silenciador del Gen , Lisogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Recombinación Genética
5.
J Biol Chem ; 286(45): 38876-85, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21908845

RESUMEN

Temperate bacteriophage lytic development is intrinsically related to the stress response in particular at the DNA replication and virion maturation steps. Alternatively, temperate phages become lysogenic and integrate their genome into the host chromosome. Under stressful conditions, the prophage resumes a lytic development program, and the phage DNA is excised before being replicated. The KplE1 defective prophage of Escherichia coli K12 constitutes a model system because it is fully competent for integrative as well as excisive recombination and presents an atypical recombination module, which is conserved in various phage genomes. In this work, we identified the host-encoded stress-responsive molecular chaperone DnaJ (Hsp40) as an active participant in KplE1 prophage excision. We first show that the recombination directionality factor TorI of KplE1 specifically interacts with DnaJ. In addition, we found that DnaJ dramatically enhances both TorI binding to its DNA target and excisive recombination in vitro. Remarkably, such stimulatory effect by DnaJ was performed independently of its DnaK chaperone partner and did not require a functional DnaJ J-domain. Taken together, our results underline a novel and unsuspected functional interaction between the generic host stress-regulated chaperone and temperate bacteriophage lysogenic development.


Asunto(s)
ADN Viral/metabolismo , Escherichia coli K12/metabolismo , Escherichia coli K12/virología , Proteínas del Choque Térmico HSP40/metabolismo , Profagos/fisiología , Recombinación Genética/fisiología , Activación Viral/fisiología , ADN Viral/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...