Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38399866

RESUMEN

The use of tissue engineering to address the shortcomings of current procedures for tendons and ligaments is promising, but it requires a suitable scaffold that meets various mechanical, degradation-related, scalability-related, and biological requirements. Macroporous textile scaffolds made from appropriate fiber material have the potential to fulfill the first three requirements. This study aimed to investigate the biocompatibility, sterilizability, and functionalizability of a multilayer braided scaffold. These macroporous scaffolds with dimensions similar to those of the human anterior cruciate ligament consist of fibers with appropriate tensile strength and degradation behavior melt-spun from Polycaprolactone (PCL). Two different cross-sectional geometries resulting in significantly different specific surface areas and morphologies were used at the fiber level, and a Chitosan-graft-PCL (CS-g-PCL) surface modification was applied to the melt-spun substrates for the first time. All scaffolds elicited a positive cell response, and the CS-g-PCL modification provided a platform for incorporating functionalization agents such as drug delivery systems for growth factors, which were successfully released in therapeutically effective quantities. The fiber geometry was found to be a variable that could be manipulated to control the amount released. Therefore, scaled, surface-modified textile scaffolds are a versatile technology that can successfully address the complex requirements of tissue engineering for ligaments and tendons, as well as other structures.

2.
Appl Microbiol Biotechnol ; 107(23): 7071-7087, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37755509

RESUMEN

Nanofiber meshes from electrospun chitosan, highly modified with biotin and arylazides, are well-suited for application as enzyme immobilization matrices. To test this, catalytically active biomolecules were immobilized onto photocrosslinked nanofibrous nonwovens consisting mainly of biotinylated fungal chitosan and a small amount (10 w%) of poly ethylene oxide. In this study, we show that over 10 µg eugenol oxidase per milligram dry polymer matrix can be loaded on UV-crosslinked chitosan nanofibers. We further demonstrate that bound enzyme activity can be fully retained for over 7 days of storage at ambient conditions in aqueous buffer. Samples loaded at maximum enzyme carrying capacity were tested in a custom-made plug-flow reactor system with online UV-VIS spectroscopy for activity determination. High wettability and durability of the hydrophilic chitosan support matrix enabled continuous oxidation of model substrate vanillyl alcohol into vanillin with constant turnover at flow rates of up to 0.24 L/h for over 6 h. This proves the above hypothesis and enables further application of the fibers as stacked microfluidic membranes, biosensors, or structural starting points for affinity crosslinked enzyme gels. KEY POINTS: • Biotinylated chitosan-based nanofibers retain enzymes via mild affinity interactions • Immobilized eugenol oxidase shows high activity and resists continuous washing • Nanofiber matrix material tolerated high flow rates in a continuous-flow setup.


Asunto(s)
Quitosano , Nanofibras , Quitosano/química , Nanofibras/química , Eugenol , Enzimas Inmovilizadas/metabolismo , Oxidorreductasas
3.
ACS Biomater Sci Eng ; 9(6): 3320-3334, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37219536

RESUMEN

Biomimetic scaffolds recreating key elements of the architecture and biological activity of the extracellular matrix have enormous potential for soft tissue engineering applications. Combining appropriate mechanical properties with select biological cues presents a challenge for bioengineering, as natural materials are most bioactive but can lack mechanical integrity, while synthetic polymers have strength but are often biologically inert. Blends of synthetic and natural materials, aiming to combine the benefits of each, have shown promise but inherently require a compromise, diluting down favorable properties in each polymer to accommodate the other. Here, we electrospun a material comprising chitosan, a natural polysaccharide, and polycaprolactone (PCL), one of the most widely studied synthetic polymers used in materials engineering. In contrast to a classical blend, here PCL was chemically grafted onto the chitosan backbone to create chitosan-graft-polycaprolactone (CS-g-PCL) and then combined further with unmodified PCL to generate scaffolds with discreet chitosan functionalization. These small amounts of chitosan led to significant changes in scaffold architecture and surface chemistry, reducing the fiber diameter, pore size, and hydrophobicity. Interestingly, all CS-g-PCL-containing blends were stronger than control PCL, though with reduced elongation. In in vitro assessments, increasing the CS-g-PCL content led to significant improvements in in vitro blood compatibility compared to PCL alone while increasing fibroblast attachment and proliferation. In a mouse subcutaneous implantation model, a higher CS-g-PCL content improved the immune response to the implants. Macrophages in tissues surrounding CS-g-PCL scaffolds decreased proportionately to the chitosan content by up to 65%, with a corresponding decrease in pro-inflammatory cytokines. These results suggest that CS-g-PCL is a promising hybrid material comprising natural and synthetic polymers with tailorable mechanical and biological properties, justifying further development and in vivo evaluation.


Asunto(s)
Quitosano , Ratones , Animales , Quitosano/farmacología , Andamios del Tejido/química , Polímeros/química , Inmunidad
4.
J Funct Biomater ; 13(4)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36278629

RESUMEN

Chronic tendon ruptures are common disorders in orthopedics. The conventional surgical methods used to treat them often require the support of implants. Due to the non-availability of suitable materials, 3D-printed polycaprolactone (PCL) scaffolds were designed from two different starting materials as suitable candidates for tendon-implant applications. For the characterization, mechanical testing was performed. To increase their biocompatibility, the PCL-scaffolds were plasma-treated and coated with fibronectin and collagen I. Cytocompatibility testing was performed using L929 mouse fibroblasts and human-bone-marrow-derived mesenchymal stem cells. The mechanical testing showed that the design adaptions enhanced the mechanical stability. Cell attachment was increased in the plasma-treated specimens compared to the control specimens, although not significantly, in the viability tests. Coating with fibronectin significantly increased the cellular viability compared to the untreated controls. Collagen I treatment showed an increasing trend. The desired cell alignment and spread between the pores of the construct was most prominent on the collagen-I-coated specimens. In conclusion, 3D-printed scaffolds are possible candidates for the development of tendon implants. Enhanced cytocompatibility was achieved through surface modifications. Although adaptions in mechanical strength still require alterations in order to be applied to human-tendon ruptures, we are optimistic that a suitable implant can be designed.

5.
Bioengineering (Basel) ; 9(10)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36290534

RESUMEN

Bacterial adhesion to dental implants is the onset for the development of pathological biofilms. Reliable characterization of this initial process is the basis towards the development of anti-biofilm strategies. In the present study, single-cell force spectroscopy (SCFS), by means of an atomic force microscope connected to a microfluidic pressure control system (FluidFM), was used to comparably measure adhesion forces of different oral bacteria within a similar experimental setup to the common implant material titanium. The bacteria selected belong to different ecological niches in oral biofilms: the commensal pioneers Streptococcus oralis and Actinomyces naeslundii; secondary colonizer Veillonella dispar; and the late colonizing pathogens Porphyromonas gingivalis as well as fimbriated and non-fimbriated Aggregatibacter actinomycetemcomitans. The results showed highest values for early colonizing pioneer species, strengthening the link between adhesion forces and bacteria's role in oral biofilm development. Additionally, the correlation between biophysical cellular characteristics and SCFS results across species was analyzed. Here, distinct correlations between electrostatically driven maximum adhesion force, bacterial surface elasticity and surface charge as well as single-molecule attachment points, stretching capability and metabolic activity, could be identified. Therefore, this study provides a step towards the detailed understanding of oral bacteria initial adhesion and could support the development of infection-resistant implant materials in future.

6.
Langmuir ; 38(37): 11149-11159, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36067458

RESUMEN

Two-dimensional (2D) semiconductor nanoplatelets (NPLs) are strongly photoluminescent materials with interesting properties for optoelectronics. Especially their narrow photoluminescence paired with a high quantum yield is promising for light emission applications with high color purity. However, retaining these features in solid-state thin films together with an efficient encapsulation of the NPLs is a challenge, especially when trying to achieve high-quality films with a defined optical density and low surface roughness. Here, we show photoluminescent polymer-encapsulated inorganic-organic nanocomposite coatings of 2D CdSe/CdS NPLs in poly(diallyldimethylammonium chloride) (PDDA) and poly(ethylenimine) (PEI), which are prepared by sequential layer-by-layer (LbL) deposition. The electrostatic interaction between the positively charged polyelectrolytes and aqueous phase-transferred NPLs with negatively charged surface ligands is used as a driving force to achieve self-assembled nanocomposite coatings with a well-controlled layer thickness and surface roughness. Increasing the repulsive forces between the NPLs by increasing the pH value of the dispersion leads to the formation of nanocomposites with all NPLs arranging flat on the substrate, while the surface roughness of the 165 nm (50 bilayers) thick coating decreases to Ra = 14 nm. The photoluminescence properties of the nanocomposites are determined by the atomic layer thickness of the NPLs and the 11-mercaptoundecanoic acid ligand used for their phase transfer. Both the full width at half-maximum (20.5 nm) and the position (548 nm) of the nanocomposite photoluminescence are retained in comparison to the colloidal CdSe/CdS NPLs in aqueous dispersion, while the measured photoluminescence quantum yield of 5% is competitive to state-of-the-art nanomaterial coatings. Our approach yields stable polymer-encapsulated CdSe/CdS NPLs in smooth coatings with controllable film thickness, rendering the LbL deposition technique a powerful tool for the fabrication of solid-state photoluminescent nanocomposites.

7.
ACS Biomater Sci Eng ; 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35622002

RESUMEN

Temporally and spatially controlled growth factor release from a polycaprolactone fiber mat, which also provides a matrix for directional cell colonization and infiltration, could be a promising regenerative approach for degenerated tendon-bone junctions. For this purpose, polycaprolactone fiber mats were coated with tailored chitosan-based nanogels to bind and release the growth factors bone morphogenetic protein 2 (BMP-2) and transforming growth factor-ß3 (TGF-ß3), respectively. In this work we provide meaningful in vitro data for the understanding of the drug delivery performance and sterilizability of novel implant prototypes in order to lay the foundation for in vivo testing. ELISA-based in vitro release studies were used to investigate the spatial and temporal control of release, as well as the influence of radiation sterilization on protein activity and release behavior. Layer-by-layer coatings based on BMP-2-containing chitosan tripolyphosphate nanogel particles and negatively charged alginate showed a good sustainment of BMP-2 release from chemically modified polycaprolactone fiber mats. Release control improved with increasing layer numbers. The approach of controlling the release via a barrier of cross-linked chitosan azide proved less promising. By using a simple, partial immersion-based dip-coating process, it was possible to apply opposing gradients of the growth factors BMP-2 and TGF-ß3. Final radiation sterilization of the growth factor-loaded implant prototypes resulted in a radiation dose-correlated degradation of the growth factors, which could be prevented by lyophilization into protective matrices. For the manufacture of sterile implants, the growth factor loading step must probably be carried out under aseptic conditions. The layer-by-layer coated implant prototypes provided sustained release from opposing gradients of the growth factors BMP-2 and TGF-ß3 and thus represent a promising approach for the restoration of tendon-bone defects.

8.
Macromol Biosci ; 22(6): e2100518, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35358360

RESUMEN

Amphiphilic block copolymers with a thermoresponsive poly(N-isopropylacrylamide) block and a glycopeptide block are synthesized and particle formation as well as interaction of the glyco-corona with lectins is investigated. The synthetic route comprises the preparation of block copolymers by N-carboxyanhydride polymerization and subsequent deprotection to obtain pH- and thermoresponsive poly(l-glutamic acid)-b-poly(N-isopropylacrylamide) (pGA-b-pNIPAM), which is then further modified with different amino sugars by a versatile coupling method with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholin-4-ium chloride (DMT-MM). The glycosylated pGA-b-pNIPAM block copolymers are investigated with regard to cloud point temperatures (Tcp ), particle size, and stability. The morphology of the particles is visualized using cryo-SEM. Zeta potential measurements are indicating that the saccharide moieties are located on the surface of the particles. This assumption is further substantiated by quantitative lectin interaction assays with nonaggregated and aggregated glycosylated pGA-b-pNIPAM. The interaction of the model lectin ConA with the block copolymers is independent of the degree of substitution in the nonaggregated state at room temperature. However, at 37 °C, when particles of pGA-b-pNIPAM are present, the interaction becomes stronger with increasing degree of substitution. This interaction with lectins can be used for targeting saccharide-modified particles in drug delivery.


Asunto(s)
Lectinas , Tamaño de la Partícula , Polímeros , Temperatura
9.
Front Bioeng Biotechnol ; 10: 776890, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35141211

RESUMEN

State-of-the-art treatment for sensorineural hearing loss is based on electrical stimulation of residual spiral ganglion neurons (SGNs) with cochlear implants (CIs). Due to the anatomical gap between the electrode contacts of the CI and the residual afferent fibers of the SGNs, spatial spreading of the stimulation signal hampers focused neuronal stimulation. Also, the efficiency of a CI is limited because SGNs degenerate over time due to loss of trophic support. A promising option to close the anatomical gap is to install fibers as artificial nerve guidance structures on the surface of the implant and install on these fibers drug delivery systems releasing neuroprotective agents. Here, we describe the first steps in this direction. In the present study, suture yarns made of biodegradable polymers (polyglycolide/poly-ε-caprolactone) serve as the basic fiber material. In addition to the unmodified fiber, also fibers modified with amine groups were employed. Cell culture investigations with NIH 3T3 fibroblasts attested good cytocompatibility to both types of fibers. The fibers were then coated with the extracellular matrix component heparan sulfate (HS) as a biomimetic of the extracellular matrix. HS is known to bind, stabilize, modulate, and sustainably release growth factors. Here, we loaded the HS-carrying fibers with the brain-derived neurotrophic factor (BDNF) which is known to act neuroprotectively. Release of this neurotrophic factor from the fibers was followed over a period of 110 days. Cell culture investigations with spiral ganglion cells, using the supernatants from the release studies, showed that the BDNF delivered from the fibers drastically increased the survival rate of SGNs in vitro. Thus, biodegradable polymer fibers with attached HS and loaded with BDNF are suitable for the protection and support of SGNs. Moreover, they present a promising base material for the further development towards a future neuronal guiding scaffold.

10.
Polymers (Basel) ; 13(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34451241

RESUMEN

An optimization of the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and hydroxy benzotriazole mediated conjugation of the polysaccharide chitosan with functional carboxylic acids was shown. Optimal parameters that enable resource-efficient synthesis of highly functionalized chitosan were identified. In particular, use of only catalytic instead of stoichiometric amounts of hydroxy benzotriazole and tight control of pH in reaction mixture resulted in highly efficient incorporation of the desired moieties as side chains in chitosan. As a result, the model reactant 4-azidobenzoic acid was incorporated resulting in a degree of substitution of over 30% with very high coupling efficacy of up to 90%. Similar results were obtained with other carboxylic acids such as methacrylic acid, 3-(2-furyl) propionic acid and 3-maleimido propionic acid, highlighting the broad applicability of our findings for the functionalization of chitosan.

11.
Antibiotics (Basel) ; 10(6)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072352

RESUMEN

Infection-controlled release of antibacterial agents is of great importance, particularly for the control of peri-implant infections in the postoperative phase. Polymers containing antibiotics bound via enzymatically cleavable linkers could provide access to drug release systems that could accomplish this. Dispersions of nanogels were prepared by ionotropic gelation of alginate with poly-l-lysine, which was conjugated with ciprofloxacin as model drug via a copper-free 1,3-dipolar cycloaddition (click reaction). The nanogels are stable in dispersion and form films which are stable in aqueous environments. However, both the nanogels and the layers are degraded in the presence of an enzyme and the ciprofloxacin is released. The efficacy of the released drug against Staphylococcus aureus is negatively affected by the residues of the linker. Both the acyl modification of the amine nitrogen in ciprofloxacin and the sterically very demanding linker group with three annellated rings could be responsible for this. However the basic feasibility of the principle for enzyme-triggered release of drugs was successfully demonstrated.

12.
Pharmaceutics ; 13(4)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921903

RESUMEN

Chitosan nanogel-coated polycaprolactone (PCL) fiber mat-based implant prototypes with tailored release of bone morphogenic protein 2 (BMP-2) are a promising approach to achieve implant-mediated bone regeneration. In order to ensure reliable in vitro release results, the robustness of a commercially available ELISA for E. coli-derived BMP-2 and the parallel determination of BMP-2 recovery using a quantitative biological activity assay were investigated within a common release setup, with special reference to solubility and matrix effects. Without bovine serum albumin and Tween 20 as solubilizing additives to release media buffed at physiological pH, BMP-2 recoveries after release were notably reduced. In contrast, the addition of chitosan to release samples caused an excessive recovery. A possible explanation for these effects is the reversible aggregation tendency of BMP-2, which might be influenced by an interaction with chitosan. The interfering effects highlighted in this study are of great importance for bio-assay-based BMP-2 quantification, especially in the context of pharmaceutical release experiments.

13.
J Biomed Mater Res A ; 109(5): 600-614, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32608183

RESUMEN

Polycaprolactone (PCL) fiber mats with different surface modifications were functionalized with a chitosan nanogel coating to attach the growth factor human bone morphogenetic protein 2 (BMP-2). Three different hydrophilic surface modifications were compared with regard to the binding and in vitro release of BMP-2. The type of surface modification and the specific surface area derived from the fiber thickness had an important influence on the degree of protein loading. Coating the PCL fibers with polydopamine resulted in the binding of the largest BMP-2 quantity per surface area. However, most of the binding was irreversible over the investigated period of time, causing a low release in vitro. PCL fiber mats with a chitosan-graft-PCL coating and an additional alginate layer, as well as PCL fiber mats with an air plasma surface modification boundless BMP-2, but the immobilized protein could almost completely be released. With polydopamine and plasma modifications as well as with unmodified PCL, high amounts of BMP-2 could also be attached directly to the surface. Integration of BMP-2 into the chitosan nanogel functionalization considerably increased binding on all hydrophilized surfaces and resulted in a sustained release with an initial burst release of BMP-2 without detectable loss of bioactivity in vitro.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacocinética , Quitosano , Nanogeles , Poliésteres , Andamios del Tejido , Adsorción , Aire , Alginatos , Animales , Bioensayo , Proteína Morfogenética Ósea 2/química , Carbocianinas , Línea Celular , Materiales Biocompatibles Revestidos , Preparaciones de Acción Retardada , Liberación de Fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indoles , Ratones , Polímeros , Unión Proteica , Replegamiento Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Propiedades de Superficie
14.
Macromol Biosci ; : e2000259, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33289254

RESUMEN

The scope of this study includes the synthesis of chitosan-g-[peptide-poly-ε-caprolactone] and its self-assembly into polymeric vesicles employing the solvent shift method. In this way, well-defined core-shell structures suitable for encapsulation of drugs are generated. The hydrophobic polycaprolactone side-chain and the hydrophilic chitosan backbone are linked via an enzyme-cleavable peptide. The synthetic route involves the functionalization of chitosan with maleimide groups and the preparation of polycaprolactone with alkyne end-groups. A peptide functionalized with a thiol group on one side and an azide group on the other side is prepared. Thiol-ene click-chemistry and azide-alkyne Huisgen cycloaddition are then used to link the chitosan and poly-ε-caprolactone chains, respectively, with this peptide. For a preliminary study, poly-l-lysin is a readily available and cleavable peptide that is introduced to investigate the feasibility of the system. The size and shape of the polymersomes are studied by dynamic light scattering and cryo-scanning electron microscopy. Furthermore, degradability is studied by incubating the polymersomes with two enzymes, trypsin and chitosanase. A dispersion of polymersomes is used to coat titanium plates and to further test the stability against enzymatic degradation.

15.
Colloids Surf B Biointerfaces ; 189: 110843, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32044676

RESUMEN

Medical treatment of certain diseases and biomedical implants are tending to use delivery systems on the nanoscale basis for biologically active factors including drugs (e. g. antibiotics) or growth factors. Nanoparticles are a useful tool to deliver bioactive substances of different chemical nature directly to the site where it is required in the patient. Here we developed three innovative delivery systems based on different polysaccharides in order to induce a sustained release of TGF-ß3 to mediate chondrogenesis of human mesenchymal stromal cells. We were able to encapsulate the protein into nanoparticles and subsequently release TGF-ß3 from these particles. The protein was still active and was able to induce chondrogenic differentiation of human mesenchymal stromal cells.


Asunto(s)
Alginatos/química , Quitosano/química , Condrogénesis/efectos de los fármacos , Nanopartículas/química , Polifosfatos/química , Factor de Crecimiento Transformador beta3/farmacología , Diferenciación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Tamaño de la Partícula , Propiedades de Superficie , Factor de Crecimiento Transformador beta3/química
16.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32033294

RESUMEN

Biological factors such as TGF-ß3 are possible supporters of the healing process in chronic rotator cuff tears. In the present study, electrospun chitosan coated polycaprolacton (CS-g-PCL) fibre scaffolds were loaded with TGF-ß3 and their effect on tendon healing was compared biomechanically and histologically to unloaded fibre scaffolds in a chronic tendon defect rat model. The biomechanical analysis revealed that tendon-bone constructs with unloaded scaffolds had significantly lower values for maximum force compared to native tendons. Tendon-bone constructs with TGF-ß3-loaded fibre scaffolds showed only slightly lower values. In histological evaluation minor differences could be observed. Both groups showed advanced fibre scaffold degradation driven partly by foreign body giant cell accumulation and high cellular numbers in the reconstructed area. Normal levels of neutrophils indicate that present mast cells mediated rather phagocytosis than inflammation. Fibrosis as sign of foreign body encapsulation and scar formation was only minorly present. In conclusion, TGF-ß3-loading of electrospun PCL fibre scaffolds resulted in more robust constructs without causing significant advantages on a cellular level. A deeper investigation with special focus on macrophages and foreign body giant cells interactions is one of the major foci in further investigations.


Asunto(s)
Poliésteres/química , Lesiones del Manguito de los Rotadores/terapia , Factor de Crecimiento Transformador beta3/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Huesos/efectos de los fármacos , Quitosano/química , Cicatriz/tratamiento farmacológico , Fibrosis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Neutrófilos/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Ratas , Manguito de los Rotadores , Traumatismos de los Tendones/tratamiento farmacológico , Tendones/efectos de los fármacos , Andamios del Tejido
17.
PLoS One ; 15(1): e0227563, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31929570

RESUMEN

Rotator cuff tear is the most frequent tendon injury in the adult population. Despite current improvements in surgical techniques and the development of grafts, failure rates following tendon reconstruction remain high. New therapies, which aim to restore the topology and functionality of the interface between muscle, tendon and bone, are essentially required. One of the key factors for a successful incorporation of tissue engineered constructs is a rapid ingrowth of cells and tissues, which is dependent on a fast vascularization. The dorsal skinfold chamber model in female BALB/cJZtm mice allows the observation of microhemodynamic parameters in repeated measurements in vivo and therefore the description of the vascularization of different implant materials. In order to promote vascularization of implant material, we compared a porous polymer patch (a commercially available porous polyurethane based scaffold from Biomerix™) with electrospun polycaprolactone (PCL) fiber mats and chitosan-graft-PCL coated electrospun PCL (CS-g-PCL) fiber mats in vivo. Using intravital fluorescence microscopy microcirculatory parameters were analyzed repetitively over 14 days. Vascularization was significantly increased in CS-g-PCL fiber mats at day 14 compared to the porous polymer patch and uncoated PCL fiber mats. Furthermore CS-g-PCL fiber mats showed also a reduced activation of immune cells. Clinically, these are important findings as they indicate that the CS-g-PCL improves the formation of vascularized tissue and the ingrowth of cells into electrospun PCL scaffolds. Especially the combination of enhanced vascularization and the reduction in immune cell activation at the later time points of our study points to an improved clinical outcome after rotator cuff tear repair.


Asunto(s)
Materiales Biocompatibles/química , Microcirculación , Poliésteres/química , Lesiones del Manguito de los Rotadores/terapia , Animales , Materiales Biocompatibles/uso terapéutico , Capilares/fisiología , Quitosano/química , Femenino , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Microscopía Fluorescente , Nanofibras/química , Porosidad , Prótesis e Implantes , Manguito de los Rotadores/irrigación sanguínea , Lesiones del Manguito de los Rotadores/patología
18.
J Tissue Eng Regen Med ; 14(1): 186-197, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31670896

RESUMEN

Acute and chronic rotator cuff tears remain challenging for therapy. A wide range of therapeutic approaches were developed but re-tears and postoperative complications occur regularly. Especially in elderly people, the natural regeneration processes are decelerated, and graft materials are often necessary to stabilize the tendon-to-bone attachment and to improve the healing process. We here investigated in a small animal model a newly developed electrospun polycaprolactone fiber implant coated with a chitosan-polycaprolactone graft copolymer and compared these implants biomechanically and histologically with either a commercially available porous polyurethane implant (Biomerix 3D Scaffold) or suture-fixed tendons. Fifty-one rats were divided into three groups of 17 animals each. In the first surgery, the left infraspinatus tendons of all rats were detached, and the animals recovered for 4 weeks. In the second surgery, the tendons were fixed with suture material only (suture-fixed group; n = 17), whereas in the two experimental groups, the tendons were fixed with suture material and the polyurethane implant (Biomerix scaffold group; n = 17) or the modified electrospun polycaprolactone fiber implant (CS-g-PCL scaffold group; n=17), respectively. The unaffected right infraspinatus tendons were used as native controls. After a recovery of 8 weeks, all animals were clinically inconspicuous. In 12 animals of each group, repaired entheses were biomechanically tested for force at failure, stiffness, and modulus of elasticity, and in five animals, repaired entheses were analyzed histologically. Biomechanically, all parameters did not differ statistically significant between both implant groups, and the entheses failed typically at the surgical site. However, with respect to the force at failure, the median values of the two implant groups were smaller than the median value of the suture-fixed group. Histologically, the modified polycaprolactone fiber implant showed no acute inflammation processes, a good infiltration with cells, ingrowth of blood vessels and tendinous tissue, and a normal fibrous ensheathment. Further improvement of the implant material could be achieved by additional implementation of drug delivery systems. Therewith, the used CS-g-PCL fiber mat is a promising basic material to reach the goal of a clinically usable graft for rotator cuff tear repair.


Asunto(s)
Quitosano/química , Electroquímica/métodos , Poliésteres/química , Lesiones del Manguito de los Rotadores/cirugía , Manguito de los Rotadores/cirugía , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Anciano , Animales , Fenómenos Biomecánicos , Humanos , Masculino , Ensayo de Materiales , Procedimientos Ortopédicos/métodos , Polímeros/química , Poliuretanos/química , Porosidad , Ratas , Ratas Endogámicas Lew , Lesiones del Manguito de los Rotadores/patología , Rotura/patología , Estrés Mecánico , Suturas , Tendones/patología , Cicatrización de Heridas
19.
Biomolecules ; 9(10)2019 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-31590366

RESUMEN

Therapeutics, proteins or drugs, can be encapsulated into multilayer systems prepared from chitosan (CS)/tripolyphosphat (TPP) nanogels and polyanions. Such multilayers can be built-up by Layer-by-Layer (LbL) deposition. For use as drug-releasing implant coating, these multilayers must meet high requirements in terms of stability. Therefore, photochemically crosslinkable chitosan arylazide (CS-Az) was synthesized and nanoparticles were generated by ionotropic gelation with TPP. The particles were characterized with regard to particle size and stability and were used to form the top-layer in multilayer films consisting of CS-TPP and three different polysaccharides as polyanions, namely alginate, chondroitin sulfate or hyaluronic acid, respectively. Subsequently, photo-crosslinking was performed by irradiation with UV light. The stability of these films was investigated under physiological conditions and the influence of the blocking layer on layer thickness was investigated by ellipsometry. Furthermore, the polyanion and the degree of acetylation (DA) of chitosan were identified as additional parameters that influence the film structure and stability. Multilayer systems blocked with the photo-crosslinked chitosan arylazide showed enhanced stability against degradation.


Asunto(s)
Azidas/química , Quitosano/química , Polisacáridos/síntesis química , Acetilación , Sistemas de Liberación de Medicamentos , Estabilidad de Medicamentos , Nanopartículas , Tamaño de la Partícula , Procesos Fotoquímicos , Polielectrolitos , Polisacáridos/química
20.
J Tissue Eng Regen Med ; 13(7): 1190-1202, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31025510

RESUMEN

In orthopaedic medicine, connective tissues are often affected by traumatic or degenerative injuries, and surgical intervention is required. Rotator cuff tears are a common cause of shoulder pain and disability among adults. The development of graft materials for bridging the gap between tendon and bone after chronic rotator cuff tears is essentially required. The limiting factor for the clinical success of a tissue engineering construct is a fast and complete vascularization of the construct. Otherwise, immigrating cells are not able to survive for a longer period of time, resulting in the failure of the graft material. The femur chamber allows the observation of microhaemodynamic parameters inside implants located in close vicinity to the femur in repeated measurements in vivo. We compared a porous polymer patch (a commercially available porous polyurethane-based scaffold from Biomerix™) with electrospun polycaprolactone (PCL) fibre mats and chitosan (CS)-graft-PCL modified electrospun PCL (CS-g-PCL) fibre mats in vivo. By means of intravital fluorescence microscopy, microhaemodynamic parameters were analysed repetitively over 20 days at intervals of 3 to 4 days. CS-g-PCL modified fibre mats showed a significantly increased vascularization at Day 10 compared with Day 6 and at Day 14 compared with the porous polymer patch and the unmodified PCL fibre mats at the same day. These results could be verified by histology. In conclusion, a clear improvement in terms of vascularization and biocompatibility is achieved by graft-copolymer modification compared with the unmodified material.


Asunto(s)
Fémur/metabolismo , Implantes Experimentales , Ensayo de Materiales , Neovascularización Fisiológica , Cemento de Policarboxilato , Animales , Quitosano/química , Quitosano/farmacología , Fémur/irrigación sanguínea , Fémur/patología , Masculino , Cemento de Policarboxilato/química , Cemento de Policarboxilato/farmacología , Porosidad , Ratas , Ratas Endogámicas Lew
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...