Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344157

RESUMEN

Six rhenium hydride complexes, [(6,6'-R2-bpy)Re(CO)3H] (bpy = 2,2'-bipyridine, R = OEt, OMe, NHMe, Me, F, Br), were synthesized. These complexes insert CO2 to form rhenium formate complexes of the type [(6,6'-R2-bpy)Re(CO)3{OC(O)H}]. All the rhenium formate species were characterized using X-ray crystallography, which revealed that the bpy ligand is not coplanar with the metal coordination plane containing the two nitrogen donors of the bpy ligand but tilted. A solid-state structure of [(6,6'-Me2-bpy)Re(CO)3H] determined using MicroED also featured a tilted bpy ligand. The kinetics of CO2 insertion into complexes of the type [(6,6'-R2-bpy)Re(CO)3H] were measured experimentally and the thermodynamic hydricities of [(6,6'-R2-bpy)Re(CO)3H] species were determined using theoretical calculations. A Brønsted plot constructed using the experimentally determined rate constants for CO2 insertion and the calculated thermodynamic hydricities for [(6,6'-R2-bpy)Re(CO)3H] revealed a linear free energy relationship (LFER) between thermodynamic and kinetic hydricity. This LFER is different to the previously determined relationship for CO2 insertion into complexes of the type [(4,4'-R2-bpy)Re(CO)3H]. At a given thermodynamic hydricity, CO2 insertion is faster for complexes containing a 6,6'-substituted bpy ligand. This is likely in part due to the tilting observed for systems with 6,6'-substituted bpy ligands. Notably, the 6,6'-(NHMe)2-bpy ligand could in principle stabilize the transition state for CO2 insertion via hydrogen bonding. This work shows that if only the rate of CO2 insertion into [(6,6'-(NHMe)2-bpy)Re(CO)3H] is compared to [(4,4'-R2-bpy)Re(CO)3H] systems, the increase in rate could be easily attributed to hydrogen bonding, but in fact all 6,6'-substituted systems lead to faster than expected rates.

2.
Chem Sci ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39246333

RESUMEN

The synthetic tunability and porosity of two-dimensional (2D) metal-organic frameworks (MOFs) renders them a promising class of materials for ultrathin and nanoscale applications. Conductive 2D MOFs are of particular interest for applications in nanoelectronics, chemo-sensing, and memory storage. However, the lack of covalency along the stacking axis typically leads to poor crystallinity in 2D MOFs, limiting structural analysis and precluding exfoliation. One strategy to improve crystal growth is to increase order along the stacking direction. Here, we demonstrate the synthesis of mechanically exfoliatable macroscopic crystals of a 2D zinc MOF by selective dimensional reduction of a 3D zinc MOF bearing a dianthracene (diAn) ligand along the stacking axis. The diAn ligand, a thermally cleavable analogue of 4,4'-bipyridine, is synthesized by the direct functionalization of dianthraldehyde in a novel "dianthracene-first" approach. This work presents a new strategy for the growth of macroscopic crystals of 2D materials while introducing the functionalization of dianthraldehyde as a means to access new stimuli-responsive ligands.

3.
Chemistry ; 30(54): e202401308, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-38997795

RESUMEN

Most redox processes that break/form bonds involve net 2e- changes, and many are coupled to protons. Yet most proton-coupled electron transfer (PCET) studies focus on 1e-/1H+ reactions. Reported here is a family of molecular models that undergo tunable 2e-/2H+ redox changes. Complexes [(X2bpy)RuII(en*)2](PF6)2 and [(X2bpy)RuIV(en*-H)2](PF6)2 have been synthesized with bpy=2,2'-bipyridine with 4,4'-subtitutions X=-NMe2, -OMe, -Me, -H, -CF3; and en*=2,3-dimethyl-2,3-butanediamine. They have been characterized by IR, UV-vis, and NMR spectroscopies, XRD, electrochemistry, mass spectrometry, DFT and (TD)DFT computations. The introduction of electron-withdrawing and donating groups at the 4,4'-position of the bpy ligand affects the complexes' redox potentials, pKa's, and Bond Dissociation Free Energies (BDFEs) of the N-H bonds in the en* ligands. The average BDFEs for the overall 2e-/2H+ PCET span over 5 kcal/mol. Notably, these complexes all show marked potential inversion over an extended range, ΔpKa>25 units and ΔE0>1.4 V. Potential inversion remains despite the electronic influence of bpy's substitutions which regulate N-H properties several bonds apart by trans-effect over dπ-molecular orbitals at the Ru center. The experimental and computational results presented in this work support the presence of strong coupling between electrons and protons, for modelling insights of 2e-/2H+ transfer reactivity.

4.
Org Lett ; 26(29): 6295-6300, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39004842

RESUMEN

The Rh(II)-catalyzed enantioselective S-alkylation of sulfenamides with α-amide diazoacetates at 1 mol % catalyst loading to obtain sulfilimines in high yields and enantiomeric ratios of up to 99:1 is reported. The enantioenriched sulfilimine products incorporate versatile amide functionality poised for further elaboration to diverse sulfoximines with multiple stereogenic centers, including by highly diastereoselective sulfilimine and sulfoximine α-alkylation with alkylating agents and epoxides and by interconversion of the amide to N-tert-butanesulfinyl aldimines, followed by diastereoselective additions.

5.
Acta Crystallogr C Struct Chem ; 80(Pt 6): 179-189, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38712546

RESUMEN

We report on the latest advancements in Microcrystal Electron Diffraction (3D ED/MicroED), as discussed during a symposium at the National Center for CryoEM Access and Training housed at the New York Structural Biology Center. This snapshot describes cutting-edge developments in various facets of the field and identifies potential avenues for continued progress. Key sections discuss instrumentation access, research applications for small molecules and biomacromolecules, data collection hardware and software, data reduction software, and finally reporting and validation. 3D ED/MicroED is still early in its wide adoption by the structural science community with ample opportunities for expansion, growth, and innovation.


Asunto(s)
Microscopía por Crioelectrón , Programas Informáticos , Flujo de Trabajo
6.
ACS Catal ; 14(9): 6897-6914, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38737398

RESUMEN

A family of 4,4'-tBu2-2,2'-bipyridine (tBubpy) ligands with substituents in either the 6-position, 4,4'-tBu2-6-Me-bpy (tBubpyMe), or 6 and 6'-positions, 4,4'-tBu2-6,6'-R2-bpy (tBubpyR2; R = Me, iPr, sBu, Ph, or Mes), was synthesized. These ligands were used to prepare Ni complexes in the 0, I, and II oxidation states. We observed that the substituents in the 6 and 6'-positions of the tBubpy ligand impact the properties of the Ni complexes. For example, bulkier substituents in the 6,6'-positions of tBubpy better stabilized (tBubpyR2)NiICl species and resulted in cleaner reduction from (tBubpyR2)NiIICl2. However, bulkier substituents hindered or prevented coordination of tBubpyR2 ligands to Ni0(cod)2. In addition, by using complexes of the type (tBubpyMe)NiCl2 and (tBubpyR2)NiCl2 as precatalysts for different XEC reactions, we demonstrated that the 6 or 6,6' substituents lead to major differences in catalytic performance. Specifically, while (tBubpyMe)NiIICl2 is one of the most active catalysts reported to date for XEC and can facilitate XEC reactions at room temperature, lower turnover frequencies were observed for catalysts containing tBubpyR2 ligands. A detailed study on the catalytic intermediates (tBubpy)Ni(Ar)I and (tBubpyMe2)Ni(Ar)I revealed several factors that likely contributed to the differences in catalytic activity. For example, whereas complexes of the type (tBubpy)Ni(Ar)I are low spin and relatively stable, complexes of the type (tBubpyMe2)Ni(Ar)I are high-spin and less stable. Further, (tBubpyMe2)Ni(Ar)I captures primary and benzylic alkyl radicals more slowly than (tBubpy)Ni(Ar)I, consistent with the lower activity of the former in catalysis. Our findings will assist in the design of tailor-made ligands for Ni-catalyzed transformations.

7.
Chemistry ; 30(30): e202401109, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38507249

RESUMEN

A new class of superbasic, bifunctional peptidyl guanidine catalysts is presented, which enables the organocatalytic, atroposelective synthesis of axially chiral quinazolinediones. Computational modeling unveiled the conformational modulation of the catalyst by a novel phenyl urea N-cap, that preorganizes the structure into the active, folded state. A previously unanticipated noncovalent interaction involving a difluoroacetamide acting as a hybrid mono- or bidentate hydrogen bond donor emerged as a decisive control element inducing atroposelectivity. These discoveries spurred from a scaffold-oriented project inspired from a fascinating investigational BTK inhibitor featuring two stable chiral axes and relies on a mechanistic framework that was foreign to the extant lexicon of asymmetric catalysis.


Asunto(s)
Enlace de Hidrógeno , Conformación Molecular , Catálisis , Estereoisomerismo , Quinazolinonas/química , Guanidina/química , Péptidos/química , Modelos Moleculares , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/química , Agammaglobulinemia Tirosina Quinasa/metabolismo
8.
Chem Sci ; 15(10): 3485-3494, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38455018

RESUMEN

High-valent iron alkyl complexes are rare, as they are prone to Fe-C bond homolysis. Here, we describe an unusual way to access formally iron(iv) alkyl complexes through double silylation of iron(i) alkyl dinitrogen complexes to form an NNSi2 group. Spectroscopically validated computations show that the disilylehydrazido(2-) ligand stabilizes the formal iron(iv) oxidation state through a strongly covalent Fe-N π-interaction, in which one π-bond fits an "inverted field" description. This means that the two bonding electrons are localized more on the metal than the ligand, and thus an iron(ii) resonance structure is a significant contributor, similar to the previously-reported phenyl analogue. However, in contrast to the phenyl complex which has an S = 1 ground state, the ground state of the alkyl complex is S = 2, which places one electron in the π* orbital, leading to longer and weaker Fe-N bonds. The reactivity of these hydrazido(2-) complexes is dependent on the steric and electronic properties of the specific alkyl group. When the alkyl group is the bulky trimethylsilylmethyl, the formally iron(iv) species is stable at room temperature and no migration of the alkyl ligand is observed. However, the analogous complex with the smaller methyl ligand does indeed undergo migration of the carbon-based ligand to the NNSi2 group to form a new N-C bond. This migration is followed by isomerization of the hydrazido ligand, and the product exists as two isomers that have distinct η1 and η2 binding of the hydrazido group. Lastly, when the alkyl group is benzyl, the Fe-C bond homolyzes to give a three-coordinate hydrazido(2-) complex which is likely due to the greater stability of a benzyl radical compared to that for methyl or trimethylsilylmethyl. These studies demonstrate the availability of a hydrocarbyl migration pathway at formally iron(iv) centers to form new N-C bonds directly to N2, though product selectivity is highly dependent on the identity of the migrating group.

9.
Science ; 383(6685): 849-854, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38386756

RESUMEN

Securines and securamines are cytotoxic alkaloids that contain reactive alkene and heterocyclic residues embedded in skeletons comprising four to six oxidized rings. This structural complexity imparts a rich chemistry to the isolates but has impeded synthetic access to the structures in the nearly three decades since their isolation. We present a flexible route to eight isolates that exemplify the three skeletal classes of metabolites. The route proceeds by the modular assembly of the advanced azides 38 and 49 (13 steps, 6 to 10% yield), sequential oxidative photocyclizations, and late-stage functional group manipulations. With this approach, the targets were obtained in 17 to 19 steps, 12 to 13 purifications, and 0.5 to 3.5% overall yield. The structure of an advanced intermediate was elucidated by microcrystal electron diffraction (MicroED) analysis. The route will support structure-function and target identification studies of the securamines.


Asunto(s)
Alcaloides , Briozoos , Alcaloides/síntesis química , Alquenos/química , Azidas/química , Electrones , Animales , Catálisis , Oxidación-Reducción
10.
J Am Chem Soc ; 146(6): 4013-4025, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38308743

RESUMEN

Biological multielectron reactions often are performed by metalloenzymes with heterometallic sites, such as anaerobic carbon monoxide dehydrogenase (CODH), which has a nickel-iron-sulfide cubane with a possible three-coordinate nickel site. Here, we isolate the first synthetic iron-sulfur clusters having a nickel atom with only three donors, showing that this structural feature is feasible. These have a core with two tetrahedral irons, one octahedral tungsten, and a three-coordinate nickel connected by sulfide and thiolate bridges. Electron paramagnetic resonance (EPR), Mössbauer, and superconducting quantum interference device (SQUID) data are combined with density functional theory (DFT) computations to show how the electronic structure of the cluster arises from strong magnetic coupling between the Ni, Fe, and W sites. X-ray absorption spectroscopy, together with spectroscopically validated DFT analysis, suggests that the electronic structure can be described with a formal Ni1+ atom participating in a nonpolar Ni-W σ-bond. This metal-metal bond, which minimizes spin density at Ni1+, is conserved in two cluster oxidation states. Fe-W bonding is found in all clusters, in one case stabilizing a local non-Hund state at tungsten. Based on these results, we compare different M-M interactions and speculate that other heterometallic clusters, including metalloenzyme active sites, could likewise store redox equivalents and stabilize low-valent metal centers through metal-metal bonding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA