Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutr Metab Cardiovasc Dis ; 33(11): 2179-2188, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37586924

RESUMEN

BACKGROUND AND AIMS: Accomplishing a high day-to-day reproducibility is important to detect changes in resting metabolic rate (RMR) and respiratory exchange ratio (RER) that may be produced after an intervention or for monitoring patients' metabolism over time. We aimed to analyze: (i) the influence of different methods for selecting indirect calorimetry data on RMR and RER assessments; and, (ii) whether these methods influence RMR and RER day-to-day reproducibility. METHODS AND RESULTS: Twenty-eight young adults accomplished 4 consecutive RMR assessments (30-min each), using the Q-NRG (Cosmed, Rome, Italy), the Vyntus CPX (Jaeger-CareFusion, Höchberg, Germany), the Omnical (Maastricht Instruments, Maastricht, The Netherlands), and the Ultima CardiO2 (Medgraphics Corporation, St. Paul, Minnesota, USA) carts, on 2 consecutive mornings. Three types of methods were used: (i) short (periods of 5 consecutive minutes; 6-10, 11-15, 16-20, 21-25, and 26-30 min) and long time intervals (TI) methods (6-25 and 6-30 min); (ii) steady state (SSt methods); and, (iii) methods filtering the data by thresholding from the mean RMR (filtering methods). RMR and RER were similar when using different methods (except RMR for the Vyntus and RER for the Q-NRG). Conversely, using different methods impacted RMR (all P ≤ 0.037) and/or RER (P ≤ 0.009) day-to-day reproducibility in all carts. The 6-25 min and the 6-30 min long TI methods yielded more reproducible measurements for all metabolic carts. CONCLUSION: The 6-25 min and 6-30 min should be the preferred methods for selecting data, as they result in the highest day-to-day reproducibility of RMR and RER assessments.

2.
Clin Nutr ; 41(3): 746-754, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35180452

RESUMEN

BACKGROUND & AIMS: The validity of most commercially available metabolic cart is mostly unknown. Thus, we aimed to determine the accuracy, precision, within-subject reproducibility, and concordance of RMR and RER measured by four commercially available metabolic carts [Cosmed Q-NRG, Vyaire Vyntus CPX, Maastricht Instruments Omnical, and Medgraphics Ultima CardiO2]. Further, we studied whether a previously proposed simulation-based post-calorimetric calibration of cart readouts [individual calibration control evaluation (ICcE)] modify the RMR and RER reproducibility and concordance. METHODS: Three experiments simulating different RMR and RER by controlled pure gas (N2 and CO2) infusions were conducted on 5 non-consecutive days. Moreover, 30-min methanol burns were performed on 3 non-consecutive days. Lastly, the RMR and RER of 29 young non-ventilated adults (11 women; 25 ± 4 years-old; BMI: 24.1 ± 3.2 kg/m2) were assessed twice using each instrument, 24 hours apart, under standardized conditions. RESULTS: The Omnical presented the lowest measurement error for RER (Omnical = 1.7 ± 0.9%; Vyntus = 4.5 ± 2.0%; Q-NRG = 6.6 ± 1.9%; Ultima = 6.8 ± 6.5%) and EE (Omnical = 1.5 ± 0.5%; Q-NRG = 2.5 ± 1.3%; Ultima = 10.7 ± 11.0%; Vyntus = 13.8 ± 5.0%) in all in vitro experiments (controlled pure gas infusions and methanol burns). In humans, the 4 metabolic carts provided discordant RMR and RER estimations (all P < 0.001). No differences were detected in RMR within-subject reproducibility (P = 0.058; Q-NRG inter-day coefficient of variance = 3.6 ± 2.5%; Omnical = 4.8 ± 3.5%; Vyntus = 5.0 ± 5.6%; Ultima = 5.7 ± 4.6%), although the Ultima CardiO2 provided larger RER inter-day differences (4.6 ± 3.5%) than the others carts (P = 0.001; Omnical = 1.9 ± 1.7%; Vyntus = 2.1 ± 1.3%; Q-NRG = 2.4 ± 2.1%). The ICcE procedure did not modify the RMR or RER concordance and did not reduce the inter-day differences in any of the carts. CONCLUSIONS: The 4 metabolic carts provided discordant measurements of RMR and RER. Overall, the Omnical provides more accurate and precise estimations of RMR and RER than the Q-NRG, Vyntus and Ultima CardiO2, and might be considered the best for assessing RMR and RER in non-ventilated humans. Finally, our results do not support the use of an ICcE procedure.


Asunto(s)
Metabolismo Basal , Metanol , Adulto , Calorimetría Indirecta/métodos , Metabolismo Energético , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Adulto Joven
3.
Nutr Metab Cardiovasc Dis ; 28(9): 929-936, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29739678

RESUMEN

BACKGROUND & AIMS: Achieving high inter-day reliability is a key factor to analyze the magnitude of change in RMR, for instance after an intervention. The aims of this study were: i) to determine the congruent validity of RMR and respiratory quotient (RQ) with two breath by breath commercially available metabolic carts [CCM Express (CCM) and Ultima CardiO2 (MGU)]; and ii) to analyze the inter-day reliability of RMR and RQ measurements. METHODS & RESULTS: Seventeen young adults participated in the study. RMR measurements were performed during two consecutive 30-min periods, on two consecutive days with both metabolic carts. The 5-min period that met the steady state criteria [Coefficient of variance (CV) < 10% for VO2, VCO2, and VE, and CV<5% for RQ] and with the lowest CV average was included in further analysis. RMR values were higher with the MGU than with the CCM on both days (two-way ANOVA, P = 0.021), however, no differences were found on RQ values obtained by both metabolic carts (P = 0.642). Absolute inter-day RMR differences obtained with the MGU were higher than those obtained with the CCM (219 ± 185 vs. 158 ± 154 kcal/day, respectively, P = 0.002; 18.3 ± 17.2% vs. 13.5 ± 15.3%, respectively, P = 0.046). We observed a significant positive association of absolute inter-day differences in RMR obtained with both metabolic carts (ß = 0.717; R2 = 0.743; P < 0.001). CONCLUSIONS: The CCM metabolic cart provides lower RMR values and seems more reliable than the MGU in our sample of young adults. Our findings also suggest that a great part of inter-day variability is explained by the individuals.


Asunto(s)
Metabolismo Basal , Pruebas Respiratorias/instrumentación , Calorimetría Indirecta/instrumentación , Adolescente , Adulto , Factores de Edad , Pruebas Respiratorias/métodos , Diseño de Equipo , Femenino , Voluntarios Sanos , Humanos , Masculino , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA